Lachlan Jardine
Whittle Lab, University of Cambridge
3.30pm Friday 7 February 2020
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Rory Cerbus
Okinawa Institute of Science and Technology
3.30pm Tuesday 24 September 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Global linear instability in aerospace applications
Vassilis Theofilis
University of Liverpool
3.30pm Friday 30 August 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Completion: Compressible turbulent wakes in constant area pressure gradients: simulation and modelling
Chitrarth Lav
University of Melbourne
3.30pm Friday 23 August 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Improving turbomachinery efficiency today is directly related to quantifying
and reducing the various sources of losses. Of these, the wake mixing loss,
resulting from wakes produced by the blade trailing edge, is of prime
interest. These wakes, when developing spatially through the periodic
constant area passage in the statorrotor row, are exposed to pressure
gradients which can impact the wake evolution and consequently the wake
mixing loss. Since a study on the effect of the pressure gradient in
isolation is not possible in an actual turbomachine stage, a canonical case
study, of a statistically twodimensional turbulent wake, is proposed to
understand and predict the underlying flow physics arising from the presence
of pressure gradients. Through the use of compressible highfidelity
simulations, the relevant flow quantities are scrutinised to explain the
effect of the pressure gradients. While the understanding developed through
the highfidelity data is invaluable, prediction of these flows is still a
challenge with the existing URANS, due to the poor underlying turbulence
closure. Thus, in the next stage, the prediction of the wake flow using
URANS is improved by developing a new closure, obtained using the
highfidelity data of the zero pressure gradient (ZPG) wake and a symbolic
machinelearning algorithm. The results from the implemented closure show
an error of less than 1% with the calculation being 400 times cheaper than
the DNS. The developed closure is also evaluated on 6 additional cases: ZPG
wakes at different Reynolds numbers and wakes in the presence of pressure
gradients, to test if the closure is reusable and robust to changing flow
conditions, with promising results. Thus, the results from the study
undertaken, both from a simulative and modelling standpoint, can serve as a
guide in predicting and minimising the loss produced by wake mixing.
Chitrarth's supervisors are Richard Sandberg and Jimmy Philip.
Reducing aerofoil–turbulence interaction noise with bioinspired designs
Lorna Ayton
University of Cambridge
3.30pm Friday 16 August 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
A dominant source of aeroengine noise arises when the unsteady wakes shed
from rotors interact with downstream stators. This socalled leadingedge
noise cannot be eliminated, but it can be reduced. By altering the spanwise
geometry of the leading edge of an airfoil it is known through experimental
testing that leadingedge noise can be significantly reduced over broadband
frequencies. In recent years, a multitude of different shapes have been
tested and all are seen to have benefits for different frequency ranges,
which may be ideal for the reduction of tonal noise, but the question
remains; which design is optimal for broadband noise reduction? A similar
unavoidable source of noise occurs when the turbulent boundary layer over
an aerofoil scatters off the sharp trailing edge, in socalled trailingedge
noise. Similar variations to the spanwise geometry are effective in reducing
this noise, but also alterations to the porosity or flexibility of the
trailing edge have been seen to be efficient, however again no predictive
tool for the optimum adaptation has been developed. This talk will present a
range of theoretical models for different aerofoil adaptations which are
known to reduce broadband turbulence interaction noise, and will illustrate
how they may be used as a stepping stone towards determining optimally quiet
designs.
Lorna completed her PhD under the supervision of Nigel Peake in 2014 in the
Department of Applied Mathematics and Theoretical Physics at the University
of Cambridge. From there she undertook a 3year Junior Research Fellowship
funded by Sidney Sussex College, and now is funded by a 5year EPSRC Early
Career Fellowship held in DAMTP. Her research focusses on developing
theoretical models for aeroacoustics, in particular aerofoilturbulence
interaction, and on advancing fundamental mathematical methods for
application to acoustic scattering problems.
Population balance equation for turbulent polydisperse flows
Fatemeh Salehi
Macquarie University
3.30pm Friday 9 August 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The transport of polydispersed droplets and solid particles in turbulent
flows is relevant to a wide range of applications such as particle
dispersion in the atmosphere, fire suppression systems and liquid spray fuel
injection in diesel engines and gas turbines. The dynamics of droplets and
particles transported by a turbulent flow involves a complex series of
interrelated phenomena including dispersion, surface growth or shrinkage,
breakage, agglomeration and nucleation. In this talk, Dr Salehi will present
an effective model based on the probability density function (PDF) form of
the population balance equation (PBE) for polysized and polyshaped droplets
and solid particles in turbulent flows. A key novelty of this method lies in
the inclusion of an explicit consideration of the inertial effects and the
shape of particles in the PDFPBE formulation.
Dr Fatemeh Salehi is a Lecturer at the School of Engineering at Macquarie
University. She received her PhD from the School of Photovoltaic and
Renewable Energy Engineering in the University of New South Wales in 2015.
She then worked as a postdoctoral research associate at the University of
Sydney before she joined Macquarie University in 2018. Her expertise is in
the development of physical models for computational fluid dynamic
simulations of turbulent flows with emphasis on particle and droplet flows
which are common in a wide range of engineering applications from drug
inhalers to fuel injectors in diesel engines and gas turbines. Dr Salehi's
research also involves combustion modelling and hydrogen safety to advance
renewable reliable energy technologies. Dr Salehi is currently a chief
investigator in $329 million Blue Economy CRC and the coleader of
Macquarie's contribution to Hydrogen Storage and Safety program of the
CRC.
Advanced acoustic microfluidic manipulation for active microcontrol
David Collins
University of Melbourne
3.30pm Friday 28 June 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
How can we move something too small to touch? Very high frequency sound
fields (>100 MHz) provide a promising avenue for microscale manipulation,
yielding acoustic wavelengths on the order of individual cells. Such
micromanipulation has a wide range of biomedical applications. Using surface
acoustic waves (SAW), a dynamic actuation method uniquely suited to
generating microscale forces, I've performed deterministic sorting,
nanoparticle concentration, droplet generation and the first acoustic 2D
patterning of individual cells. In recent work, I'm creating microscale
acoustic waveguides for even more refined activities. Combined with other
approaches, acoustic forces show substantial promise for structuring
individual cells and human tissues at the microscale.
I recently joined the Department of Biomedical Engineering at the
University of Melbourne, having come here from a joint Postdoctoral Research
Fellow at the Massachusetts Institute of Technology (MIT) and the Singapore
University of Technology and Design (SUTD). I have 26 publications on novel
acoustic actuation methods and the physics of advanced microscale
manipulation, including work appearing in Physical Review Letters, Nature
Communications and Science Advances, and have given multiple invited talks
on my work. Interests include novel acoustofluidic waveguides and arbitrary
acoustic field generation for nonuniform micropatterning in tissue
engineering applications. I completed my undergraduate degree at in
Biomedical Engineering from the University of Melbourne, and was awarded
the Bill Melbourne Medal for best engineering PhD thesis at Monash
University.
Transition to turbulence in the ocean boundary layer beneath ice shelves
Catherine Vreugdenhill
DAMTP, University of Cambridge
3.30pm Friday 21 June 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The melting of ice shelves around Antarctica has implications for ocean
circulation and sealevel rise. However, the picture of oceandriven melting
is incomplete. Here, we use largeeddy numerical simulations to resolve all
but the smallest scales of turbulence in an idealised ocean domain of a
current underneath an ice shelf. The domain is bounded from above by the
ice shelf base under melting conditions that lead to a vertical
stratification in both temperature and salinity. The mixing of warm, salty
water towards the ice base drives melting, but the resulting meltwater
freshens the water column and stabilizes the stratification, suppressing
turbulence and mixing. The transition from stratified to fully turbulent
flow is examined and found to strongly influence the melt rate. Conditions
are chosen similar to those at Antarctic sites to compare with observations
and allow exploration of future scenarios.
Cat is a Postdoctoral Research Associate with the Atmosphere–Oceans
Group at the University of Cambridge. Her research centres on smallscale
processes in the ocean that can have important impacts on ocean dynamics and
climate. In 2017, Cat completed a PhD in Geophysical Fluid Dynamics at the
Australian National University where she used numerical simulations,
laboratory experiments and theory to examine transport by deep convection in
the ocean. Cat's postdoc research investigates the oceandriven melting of
ice shelves in collaboration with researchers at the British Antarctic
Survey. By improving our knowledge of these smallscale processes she hopes
to help improve their representation in larger scale ocean and climate
models.
Microfluidics for biomedical applications
Reza Nosrati
Monash University
3.30pm Friday 14 June 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Microfluidic methods offer several advantages over their traditional
macroscale counterparts by extending the possibility of biomedical research
based on the idea of miniaturization. These miniaturized platforms provide
opportunities to manipulate cells and biological processes at the
singlecell level and develop natureinspired technologies for diagnostic
and therapeutic applications. For example, in the context of fertility,
microfluidics can match the geometry of microconfined regions within the
female reproductive tract, thus, presenting opportunities for
biomimicrybased selection of sperm that reflect the in vivo process. In
this talk, I will provide an overview of our work in developing
microfluidic technologies for (a) sperm analysis and selection, and
(b) understanding bacterial motility. These microfluidic platforms present
several promising avenues to address our largescale health and
environmental challenges.
Dr. Reza Nosrati is a Lecturer in the Department of Mechanical &
Aerospace Engineering at Monash University. Prior to joining Monash
University, he was an NSERC postdoctoral fellow in the Department of
Chemical Engineering at Queen's University (2016–2018). Dr. Nosrati
received his Ph.D. in Mechanical Engineering from the University of
Toronto (2016), his M.Sc. in Mechanical Engineering from the University of
Tehran (2010) and his B.Sc. in Mechanical Engineering from Amirkabir
University of Technology (2007).
Dr. Nosrati's research focuses on smallscale fluid mechanics
(microfluidics and nanofluidics), with applications in cell biology,
chemistry and medicine. He is a pioneer in microfluidics for male fertility
and assisted reproduction. He has authored papers in toptier scientific
journals like Nature Communications, Nature Reviews Urology and Clinical
Chemistry. Dr. Nosrati has received numerous prestigious awards and
recognitions, including the 2016 Colton Medal for research excellence in
Microsystems and Nanotechnology, and the 2018 ROYAN International Research
Award for outstanding contributions to Embryology and Andrology.
Effect of deformations on the flow over a ringwing
Christian Thomas
Monash University
3.30pm Friday 31 May 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Deformations on a wing surface can bring about significant changes in flight
performance characteristics. The ability to accurately predict
laminar–turbulent transition processes is fundamental to improving the
design of future aircraft. Several numerical methods are introduced and
applied to a model airfoil with small indentations that are sufficient to
establish separated flow and enhance boundary layer instability.
Dr. Christian Thomas received his PhD in 2007 from Cardiff University in
fluid dynamics. Following his PhD, Christian undertook postdoctoral
positions at the University of Western Australia and Imperial College
London. Christian spent 2013 working with Airbus Group Innovations and has
been a Lecturer at Monash University since June 2017.
Microfluidics of leftright symmetry breaking in mammal embryos
Andrey Kuznetsov
North Carolina State University
3.30pm Friday 24 May 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
We developed an approximate method for modelling the flow of embryonic fluid
in a ventral node. We simplified the problem as flow in a 2D cavity; the
effect of rotating cilia was modeled by specifying a constant vorticity at
the edge of the ciliated layer. We also developed an approximate solution
for morphogen transport in the nodal pit. The solutions were obtained
utilizing the proper generalized decomposition (PGD) method. We compared our
approximate solutions with the results of numerical simulation of flow
caused by the rotation of 81 cilia, and obtained reasonable agreement in
most of the flow domain. We discuss locations where agreement is less
accurate. The obtained semianalytical solutions simplify the analysis of
flow and morphogen distribution in a nodal pit.
Dr. Kuznetsov joined Department of Mechanical and Aerospace Engineering at
NC State University in 1998 after his postdoctoral appointments at
RuhrUniversity of Bochum (Germany), Ohio State University, and Vienna
University of Technology. He received PhD in Mechanical Engineering from
Russian Academy of Sciences in 1992. Dr. Kuznetsov's research interests are
in the general area of numerical modeling, including fluid mechanics,
transport in porous media, transport in living tissues, bioheat transport,
bioconvective sedimentation, Newtonian and nonNewtonian flows, flows in
microgravity, and turbulence. His most recent research addresses axonal
transport, leftright symmetry breaking in mammal embryos, modeling of
electroporation, and thermal dose optimization in cancer treatment using
hyperthermia. He attracted funding from many national and international
agencies, including DARPA, NSF, NASA, EPA, NATO, USDA, DTRA, NTC, and
Eastman Chemical. He is also an affiliate faculty member of the UNC/NCSU
Biomedical Engineering Department, Fellow of American Society of Mechanical
Engineering, Associate Editor of the ASME Journal of Heat Transfer and the
Journal of Porous Media, and a winner of a prestigious Humboldt Research
Award. In 2014, Dr. Kuznetsov was elected as a Member of the Scientific
Council of the International Center of Heat and Mass Transfer
(ICHMT).
Air quality, winds, and atmospheric physics in the western U.S.
Heather A. Holmes
Atmospheric Turbulence and Air Quality Laboratory 
Website
University of Nevada, Reno
3pm Thursday 23 May 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Left: wildfire smoke plume near Reno, NV; right: temperature inversion
in the Salt Lake Valley.
Nearly 70 million people live in the western U.S. and growth continues as
this region experiences rapid population increase. According to the 2010
U.S. Census regional population growth, from 2000–2010, in the
western U.S. was 13.8%, the second largest growth region in the nation.
While the population density in this region is low and correspondingly there
should be fewer sources of anthropogenic air pollution, many areas in the
western U.S. are currently designated as maintenance areas or are in
nonattainment for at least one of the criteria air pollutants as defined
by the National Ambient Air Quality Standards (NAAQS). This is exacerbated
by unique air pollution sources (e.g. wind blown dust and wildfire smoke)
and the local meteorological and orographical affects in the Intermountain
Region. The mountainous terrain and elevation changes create synoptic
weather patterns that lead to complex winds and atmospheric mixing that
impact air pollution transport, dispersion, and accumulation.
This talk will focus on two distinct conditions with complex atmospheric
physics that impact air quality throughout the western U.S. The first, is
when local stagnation events, initiated by slow moving high pressure
systems, cause pollutants to become trapped in cold dense air on valley
floors, often referred to as temperature inversions. Research advancements
in quantifying the turbulent fluxes and surface energy balance closure
during temperature inversions will be shown using observations from the
wintertime Persistent ColdAir Pool Study (PCAPS) in the Salt Lake Valley,
Utah. The second, is wildfire events that are common in the western U.S.
when complex flows lead to terrain induced wildfires from dry, downslope
winds, especially during drought conditions. Recent advancements in
satellite remote sensing algorithms to quantify aerosols will be discussed
and results of ongoing air quality modeling efforts to estimate wildfire
smoke exposures in the western U.S. will be presented.
Heather Holmes is an Assistant Professor in the Department of Physics and
Atmospheric Sciences Program at the University of Nevada, Reno. She
received her PhD in Mechanical Engineering from the University of Utah in
2010, where she focused on experimental investigations to study air
pollution, turbulence, meteorology, and chemistry in the atmospheric
boundary layer. She has three years of postdoctoral training, including two
years at Georgia Tech where her focus was to analyze air pollution data to
better understand how emission sources impact air quality and to develop
exposure metrics for health effects studies. Her current research group uses
groundbased monitors, atmospheric models, and satellite remote sensing to
investigate atmospheric physics, air pollution sources, transport and
dispersion, and provide data for human health and public policy
assessments.
Nonlinear exact coherent structures in pipe flow and their instabilities
Ozge Ozcakir
Monash University
3.30pm Friday 17 May 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Research on coherent structures in cylindrical pipes is an area of much
recent activity. Of particular interest are traveling wave (TW) states at
large Reynolds number R. The existence and stability of these states, and
their connection in phase space play important roles in understanding both
transition and large R behavior of pipe flows. In this talk, we consider
possible asymptotic structures at large Reynolds number R and identify
numerically calculated solutions as finite R realisation of a nonlinear
viscous core (NVC) state that collapse towards the pipe center with
increasing R at a rate R^{−1/4}. We also identify previous
numerically calculated states as finite R realisation of a vortex wave
interacting (VWI) state with asymptotic structure similar to the ones in
channel flows studied earlier by Hall & Sherwin (J. Fluid Mech.,
vol. 661, 2010, pp. 178–205). In addition, stability features of both
VWI and NVC states are investigated. Numerical calculations confirm
lowerbranch travelling waves have slow and low dimensional unstable
manifolds suggesting their relevance to transition in turbulence.
Ozge Ozcakir obtained her PhD in Mathematics from the Ohio State University.
After completion of her degree, she worked as a fulltime lecturer briefly
at OSU. She joined School of Mathematics at Monash University in 2015 as a
Research Fellow under supervision of Prof. Philip Hall. She has recently
been appointed as a Lecturer at Monash University. Her primary research
interest is numerical investigation of nonlinear coherent structures to
understand the mechanism that leads to turbulence in different geometries.
Using numerical and asymptotic techniques, she has studied coherent
structures at large Reynolds numbers. Her current work focuses on
investigating the effects of changes in viscosity parameter and the effect
of periodic suction/blowing at the pipe wall on coherent structures
numerical simulations.
An update on K41 versus K62
Robert A. Antonia
University of Newcastle
3.30pm Friday 3 May 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Although Kolmogorov's (1962) correction (K62) to his 1941 theory (K41) has
been embraced by many turbulence researchers, our recent work suggests that
there are no valid reasons for abandoning K41. In particular, analytical
considerations, based on the NS equations, which take into account the
finite Reynolds number effect, together with the available experimental and
numerical data, seem to confirm a tendency towards the simple and elegant
predictions of K41 as the Reynolds number increases. This is especially true
when the focus is on scales which lie within the dissipative range. Since
K62 is predicated on the idea that the effect of large scales on small
scales continues to increase as the Reynolds number increases, it cannot be
reconciled with the 4/5 law, a result that is exact only when the Reynolds
number approaches infinity and the effect of the large scales is
negligible.
Robert Antonia studied Mechanical Engineering at the University of Sydney,
and received his PhD in 1970. Following a postdoctoral year at Imperial
College on a CSIRO fellowship, he joined the University of Sydney as a
lecturer in Mechanical Engineering in 1972. He was appointed to the Chair of
Mechanical Engineering at the University of Newcastle in 1976. Over the
period 2001–2005, he was ARC Professorial Fellow at the University of
Newcastle. In 2004, he was awarded a Citation Laureate for Engineering by
Thomson ISI and was elected to the Australian Academy of Science. Since
2005, he has been an Emeritus Professor at the University of
Newcastle.
Molecular fluid dynamics
Edward Smith
Brunel University
3.30pm Friday 5 April 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Left: turbulent minimal channel flow simulated using molecular dynamics
(MD) and compared to CFD. Top right: posts on a wall at the molecular scale
and Bottom right: two phase flow with the moving contact line and
liquidvapour interface
Short of quantum mechanics, molecular dynamics (MD) is the most accurate
model of fluid motion we have. By simulating the motion of individual
molecules, we get a complete picture down to the nanoscale, capturing the
complete energy cascade, viscoelastic behaviour, slip boundaries,
liquidvapour interfaces and phase change.
Far from the kinetic picture of occasional molecular collisions, complex
fluid behaviour emerges from the evolving structure of a particle lattice.
From the solution of Newton's law between particles, emerges the entire
spectrum of fluid phenomena. In this talk I will introduce the MD
methodology, highlighting the link between traditional continuum fluid
dynamics and demonstrating similarities with Couette flow. I will outline
the unique insights provided, including the microscopic origins of stress
and viscosity, what happens near boundaries, the liquidvapour interfaces,
molecular heat flux and bubble nucleation. Finally, I will talk about the
simulation of the Couette minimal channel flow (Re=400) using molecular
dynamics, and discuss the insight this can provide into our understanding of
fundamental fluid phenomena and turbulence.
Edward Smith
(
www.edwardsmith.co.uk) works on
multiscale simulation which aims to combine particle and continuum methods.
He earned his PhD at Imperial College London developing theoretical and
computational techniques for the coupled simulation of molecular dynamics
(MD) and computational fluid dynamics (CFD). He was awarded the
postdoctoral excellence fellowship and simulated the first example of
nearwall turbulence using MD. He spent some time working in Swinburne
Australia, before moving to Chemical Engineering at Imperial to work on
multiphase flow and the moving contact line. His next move was to Civil
Engineering at Imperial to develop software (www.cpllibrary.org) and
techniques to link particles and continuum for granular flows, before taking
up a permanent position at Brunel University London.
An alternate length scale for Reynolds number and Rossby number in the context of insectlike wings decouples the aspectratio effects
Shantanu Bhat
Monash University
3.30pm Friday 29 March 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
A stable leadingedge vortex formed over a rotating or flapping insectlike
wing is known to be a primary reason behind an extra lift acting on the
wing. Inspired from earlier studies at high Reynoldsnumber on the high
aspectratio aircraft wings, the wing chord has been used as the reference
lengthscale, even for the insectscaled wings. However, the flow structure
on a typical low aspectratio insect wing is highly threedimensional. As
per the conventional scaling, this flow structure has been observed to be
influenced by aspect ratio, Reynolds number, and Rossby number. Our work
shows that the flow structure scales better with the wingspan, which we
propose as the new reference scale in the context of insect wings. Use of
this modified scaling for the Reynolds number and Rossby number decouples
the effects of the aspect ratio. Interestingly, this also helps reconcile
the apparently conflicting trends in the previous aspectratio studies on
insect wings.
Shantanu Bhat is working as a research officer in Fluids Laboratory for
Aeronautical and Industrial Research (FLAIR) at the Department of
Mechanical and Aerospace Engineering, Monash University. He received his PhD
from Monash University in August 2018. He has been working on the
aerodynamics of the flapping wings of insects and rotating winged seeds. In
the past, he has worked on the stall flutter of small turbomachine blades at
the Indian Institute of Science, where he obtained his masters by research.
He has also served as a lead engineer for GE Aviation in India, where he
worked on the aerodesign of GE's LEAP engine combustor. His research
interests broadly involve vortex dynamics, biolocomotion, and bluff body
flows.
What is data assimilation and how can we use it to improve models of physical systems?
Craig Bishop
School of Earth Sciences and ARC Centre of Excellence for Climate Extremes, University of Melbourne
3.30pm Friday 22 March 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
On the one hand, you have an imperfect computer model of some idealized or
filtered version of a physical system such as the atmosphere; on the other
hand, you have been taking imperfect observations of corresponding parts of
this system. How can you combine these two entities to obtain state
estimates to initialize computer model forecasts and/or expose computer
model error? These are the central questions addressed by data assimilation.
In this talk, I'll give a brief introduction to data assimilation and
highlight how my research has been approaching some of the major challenges
currently facing the weather and climate prediction communities.
Prof Bishop completed his PhD at Monash University and performed
his postdoctoral research at the University of Reading where he was awarded
the Royal Meteorological Society's L. F. Richardson prize. He was then
Professor at Pennsylvania State University before turning to operational
weather prediction at the Naval Research Laboratory in Monterey, California.
He returned to Melbourne in June 2018. His current research mainly focusses
on the data assimilation science of using models, observations and advanced
estimation theory to initialize ensemble forecasts and to identify and
account for systematic and stochastic aspects of model error in ensemble
forecasting. Prof Bishop's ensemblebased data assimilation and
ensembleforecasting techniques are now used by leading environmental
forecasting agencies such as the European Center for Medium Range Weather
Forecasting, the UK Met Office, the German weather service, the Swiss
weather service, the US National Weather Service, the US Navy and the
Japanese, Korean and Brazilian Meteorological agencies.
Tornadolike vortices in coriolis–centrifugal convection
Susanne Horn
UCLA
3.30pm Friday 15 March 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Rotating thermal convection is one of the most important mechanisms for
generating turbulence in geophysical settings, such as planetary interiors,
atmospheres, and oceans. Rotating Rayleigh–Bénard convection,
in which a fluid heated from below, cooled from above and rotated about its
vertical axis, is the canonical model used in laboratory experiments and
numerical simulations that captures the essential flow physics. However, in
most theoretical and numerical studies, rotation has only been considered in
terms of the Coriolis force, whereas the centrifugal force has been
neglected. Hence, it remains largely unknown how flows are altered by
centrifugal buoyancy, in particular, in the turbulent regime. We have
recently begun to address this deficit by numerically characterising
rotating convection including the full inertial term, i.e., by including
both Coriolis and centrifugal forces. This work has revealed that in
Coriolis–centrifugal convection stormlike structures can develop,
ranging from eyes and secondary eyewalls found in hurricanes and typhoons,
to concentrated helical upflows characteristic of tornadoes. Here, I will
mainly focus on the tornadolike vortices. These vortices are not only
selfconsistently generated, but also exhibit the physical and visual
features of type I tornadoes, i.e. tornadoes that form within mesocyclones
contained in supercell thunderstorms. I will show that centrifugal buoyancy
is, in fact, highly relevant for the understanding of these geophysical
vortices, and likely a key component in nextgeneration models of tornado
physics.
Susanne Horn is a DFG (German Research Foundation) Research Fellow at the
Department of Earth, Planetary, and Space Sciences at the University of
California, Los Angeles where she investigates fluid problems that are
relevant in a geophysical context, including tornado dynamics and planetary
core liquid metal convection. Prior to this, she was a Postdoc at the
Department of Mathematics at Imperial College London, working on datadriven
decomposition methods with application to aeroacoustic noise. She has
received her PhD in physics from the University of
Göttingen.
Some recent developments in the loworder modelling and estimation of fluid flows
Ati Sharma
University of Southampton
3.30pm Friday 8 March 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Modelling and estimating fluid flows is a difficult problem. Fluid flows
are well described by the Navier–Stokes equations, but these are
nonlinear PDEs, which are difficult to solve in a general way. Much recent
work has focused on finding lowdimensional approximations to fluid flow
systems, either by abstracting them from data generated from experiment and
simulation or by finding suitable approximations to the equations. This talk
will discuss recent approaches; Dynamic Mode Decomposition (DMD), Koopman
mode analysis and resolvent analysis. The approaches will be explained, and
recent applications to flow analysis and estimation will be presented.
Ati Sharma is Associate Professor at the University of Southampton. Ati's
undergraduate degree is in Physics (University College London) and PhD and
postdoc in Control Engineering (Imperial College). Over the last fifteen
years, Ati has turned to modelling, estimation and control fluid flows and
has published extensively in this area. His most cited paper is from 2010
introducing resolvent analysis for turbulent flows. Somewhere in there he
was also an options trader for JP Morgan.
Advanced low noise aircraft configurations and their assessment–past, present and future
Zoltán Spakovszky
MIT Gas Turbine Laboratory
3pm Monday 4 March 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Aircraft noise remains the key inhibitor of the growth of air transportation
but the focus of the noise mitigation strategies has changed. As the
propulsor fan pressure ratio (FPR) is decreased and bypass ratio (BPR) is
increased for improved fuel burn and reduced environmental impact, the
propulsion system noise is reduced near or even below the noise level of the
airframe. Jet noise has become less of a concern and, during approach and
landing, the acoustic signature is predominantly set by the airframe. Novel
aircraft concepts and architectures, enabled by distributed, more
integrated, and boundary layer ingesting propulsion systems, pose new
aeroacoustic problems which require innovative approaches and call for
teaming and collaboration as the technological challenges cut across
disciplines. One past example of such a collaborative research effort was
the Silent Aircraft Initiative (SAI), aimed at the conceptual design of an
aircraft imperceptible to the human ear outside the airport perimeter. The
initiative brought together researchers from academia, industry and
government agencies. This talk gives a brief summary of the Silent Aircraft
Initiative, the SAX40 aircraft design, and the noise reduction technologies
which were pursued. A decade past SAI, novel aircraft architectures such as
the D8 double bubble aircraft, the outcome of a joint effort between MIT,
Aurora Flight Sciences and Pratt & Whitney, are being pursued in the
quest of reducing the climate impact of aviation. With regulations
continuing to reduce the allowable aviation noise emission levels, both new
challenges and new opportunities are emerging. Electric, hybrid, and
turboelectric aircraft concepts are currently being investigated as
potential gamechangers. Independent of the level of electrification, noise
will remain a major issue as air transportation is growing and mobility
might become a key driver. The talk will discuss a selection of enabling
technologies and their implications on acoustics and noise and will give a
perspective on future trends and new directions in aeroacoustics required
to address the challenges.
Dr. Spakovszky is Professor of Aeronautics and Astronautics at the
Massachusetts Institute of Technology and the director of the Gas Turbine
Laboratory. He obtained his Dipl. Ing. degree in Mechanical Engineering from
the Swiss Federal Institute of Technology (ETH) Zürich and his MS and
Ph.D. degrees in Aeronautics and Astronautics from MIT. Dr. Spakovszky's
principal fields of interest include internal flows in turbomachinery,
compressor aerodynamics and stability, dynamic system modeling of aircraft
gas turbine engines, microscale gas bearing dynamics, and aeroacoustics.
He currently directs analytical and experimental research in these areas and
teaches graduate and undergraduate courses in thermodynamics, propulsion and
fluid mechanics, and aeroacoustics. He has authored a large number of
technical papers in refereed journals and has been awarded several ASME
International Gas Turbine Institute best paper awards, the ASME Melville
Medal, the ASME Gas Turbine Award, the ASME John P. Davis Award, a NASA
Honor Award, several AeroAstro Undergraduate Advising/Teaching Awards,
and the Ruth and Joel Spira Award for Excellence in Teaching. Dr. Spakovszky
is a technical consultant to industry and government agencies, a Fellow of
the ASME, an Associate Fellow of the AIAA, and served as the chair of the
turbomachinery committee and review chair of the ASME International Gas
Turbine Institute, and as an associate editor for the ASME Journal of
Turbomachinery.
Dense and dilute particulate flows: sediment erosion and transport phenomena
Aman Kidanemariam
University of Melbourne
3.30pm Friday 22 February 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
In this talk I will present my previous work on the problems of sediment
transport and subaqueous pattern formation by means of highfidelity direct
numerical simulations. The peculiarity of the simulations lies on the fact
that all relevant scales of the turbulent flow are taken into account, even
the nearfield around each individual sediment grain. The numerical method
employed features an immersed boundary technique for the treatment of the
moving fluid–solid interfaces and a softsphere model to realistically
treat the interparticle contacts. Our study has provided, first and
foremost, a unique set of spatially and temporally resolved information on
the flow field and the motion of individual particles which make up the
sediment bed. Furthermore, based on the rigorous analysis of the generated
data, the fluid flow and particle motion over the evolving sediment bed are
studied in great detail, providing novel insight into the different
mechanisms involved in the processes of sediment pattern formation.
Dr. Kidanemariam is a DFG (German Research Foundation) Research Fellow who
recently joined the Fluid Mechanics Research Group here at Melbourne. He
earned his PhD degree in 2015, in Civil Engineering, Geo and Environmental
sciences at Karlsruhe Institute of Technology (KIT), Germany. His research
background and interests lie in the field of computational fluid dynamics
and highperformance computing applied to environmental flow problems. His
previous research has particularly emphasized on dilute and dense
particulate flows, turbulenceparticle interaction, and shear flow driven
sediment erosion and transport phenomena. He is a recipient of the
prestigious Ercoftac Da Vinci Award 2015 for outstanding quality of PhD
research as well as several other scholarships and awards. Part of his work
has been featured in 'Focus on Fluids' article in Journal of Fluid
Mechanics, highlighting its novelty and impact in the field of sediment
transport modeling.
Statistical state dynamics: a new framework for understanding turbulent flows
Navid Constantinou
Australian National University
3.30pm Friday 8 February 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Statistical state dynamics (SSD) provides a new perspective for studying
mechanisms in turbulence. SSD is the study of the dynamics that governs the
flow statistics themselves. In flows with anisotropy and structured
coherent mean flows a closure at second order of the SSD turns out to be
both extremely useful and insightful. SSD reveals some key relevant physical
processes that are often obscure in the singlerealization flow dynamics.
Many such phenomena are intrinsically associated with the dynamics of the
statistical state and have an analytic expression only in SSD. Examples
consist of instabilities that arise intrinsically from interaction between
the coherent and the incoherent components of the turbulence. Here, I will
use a secondorder closure of the SSD to study the selforganization of
turbulent flows and the formation of largescale structure both in planetary
turbulence and in wallbounded flows. I review some of the recent advances
including: jet formation in planetary turbulence as an instability of the
turbulent state, noiseinduced roll–streak formation in
pretransitional Couette flow, and elucidating the role of the
verylargescale motions (VLSMs) in the regeneration mechanism in shear
flows away from the wall.
Navid grew up in Cyprus. He is a physicist at heart and he's fascinated with
geophysical fluid dynamics. His Ph.D. research focussed on atmospheric
dynamics and in particular the study of how the sub polar jet stream
interacts with atmospheric turbulence. After his PhD, he was awarded a NOAA
Climate & Global Change postdoctoral fellowship (2015–2017) at
Scripps Institution of Oceanography, University of California San Diego.
There, he tried to shed insight on some of the physical processes that occur
in the ocean by studying the interaction among oceanic eddies, largescale
ocean currents, and underwater mountains at the ocean floor. Since May 2018,
he joined the ARC Centre of Excellence for Climate Extremes as part of the
climate variability project focussing on the circulation of the Southern
Ocean. More at
www.navidconstantinou.com.
On the origin of wall turbulence: where is the wall?
Ricardo GarcíaMayoral
University of Cambridge
3.30pm Friday 25 January 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Surfaces that exhibit small textured features can interact with
nearwall turbulence and increase or reduce drag, which is of great
interest to the aerospace, naval, transport and energy industries. This
talk will discuss some of the dynamic mechanisms at play in that
interaction, with particular emphasis on flows over transitional
roughness and over superhydrophobic and anisotropically permeable
substrates. In flows over smooth surfaces, an origin for the wallnormal
coordinate can be defined unambiguously at the surface itself, where all
three velocity components vanish. Over complex surfaces, in contrast,
different components of the flow can experience different virtual
origins, where they perceive the apparent presence of a smooth wall. In
the limit of vanishingly small texture, in what constitutes the
'viscous' or 'linear' regime, the main effect of the surface is an
offset between the origins perceived by the mean flow and by the
background turbulence, which remains otherwise smoothlike. For larger
texture sizes, richer dynamic mechanisms produce a deviation from this
viscous regime. These mechanisms vary from texture to texture, but we
will discuss two frequent ones. The first is the direct influence of the
texture granularity, which induces a texturecoherent flow, and which we
will discuss in the framework of rough and superhydrophobic surfaces.
The second is the appearance of spanwisecoherent structures, arising
from a Kelvin–Helmholtzlike instability connected with surface
transpiration, which we will discuss in the framework of permeable
substrates.
Dr. GarcíaMayoral is a lecturer in the Department of Engineering
at the University of Cambridge. He obtained his PhD from Universidad
Politécnica de Madrid, and in 2011, conducted postdoctoral research
at the Center for Turbulence Research (CTR) at Stanford University before
joining Cambridge. His research interest is in wallbounded turbulence
with a particular emphasis on complex surfaces.
Properties of the mean momentum balance in polymer dragreduced channel flow
Chris White
University of New Hampshire
3.30pm Friday 18 January 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
In the first part of the talk, Dr. White will briefly outline his ongoing
research projects. In particular, recent work on the development of a simple
dynamical model of the turbulent boundary layer will be presented. The
formulation of the model is based on recent findings that reveal that at
large Reynolds numbers the inertially dominated region of the turbulent
boundary layer is composed of largescale zones of nearly uniform momentum
segregated by narrow fissures of concentrated vorticity. It will be shown
that a simple model that exploits these essential elements of the turbulent
boundary layer structure can reproduce statistical profiles of the
streamwise velocity that agree remarkably well with those acquired from
direct numerical simulation at high Reynolds number.
The main part of the talk will discuss research related to the phenomenon of
polymer drag reduction in wallbounded turbulent flows. Here a mean momentum
equation based analysis of polymer drag reduced channel flow is performed to
evaluate the redistribution of mean momentum and the mechanisms underlying
the redistribution processes. Similar to channel flow of Newtonian fluids,
polymer drag reduced channel flow is shown to exhibit a four layer structure
in the mean balance of forces that also connects, via the mean momentum
equation, to an underlying scaling layer hierarchy. The selfsimilar
properties of the flow related to the layer hierarchy appear to persist, but
in an altered form (different from the Newtonian fluid flow), and dependent
on the level of drag reduction. With increasing drag reduction, polymer
stress usurps the role of the inertial mechanism, and because of this the
wallnormal position where inertially dominated mean dynamics occurs moves
outward, and viscous effects become increasingly important farther from the
wall. For the high drag reduction flows of the present study, viscous
effects become nonnegligible across the entire hierarchy and an inertially
dominated logarithmic scaling region ceases to exist. It follows that the
state of maximum drag reduction is attained only after the inertial sublayer
is eradicated. According to the present mean equation theory, this coincides
with the loss of a region of logarithmic dependence in the mean
profile.
Dr. White received his Ph.D. in Mechanical Engineering from Yale University
in 2001. From 2001–2004 he was Postdoctoral Research Fellow at
Stanford University. Following his postdoctoral work, he joined Sandia
National Laboratories as a Senior Member of the Technical Staff in the
Combustion Research Facility. In 2006, he joined the Mechanical Engineering
Faculty at the University of New Hampshire. Dr. White's research expertise
is in the thermalfluid sciences with a focus on the turbulent transport of
mass, momentum, and energy. His research to date is of both fundamental and
applied nature in the areas of polymer drag reduction, turbulent boundary
layers, piston engines, flow induced erosion, biomass, and thermal
management. Dr. White received an NSF CAREER award in 2009. In 2016,
Dr. White's and coauthor Godfrey Mungal's 2008 Annual Review of Fluid
Mechanics paper "Mechanics and prediction of turbulent drag reduction with
polymer additives" was designated as a Highly Cited Paper (top 1% in the
field of Physics) by the Thompson Reuters Essential Science Indicators.
Dr. White currently has funding from NSF, ONR, NAVAIR, and NAVSEA.
A tale of two quasilinear dynamical systems: modulated waves and sheardriven instabilities
Greg Chini
University of New Hampshire
3.30pm Friday 11 January 2019
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The quasilinear (QL) approximation has facilitated the prediction and
understanding of a broad variety of fluid dynamical phenomena, ranging from
the quasibiennial oscillation of the zonal winds in the equatorial
stratosphere to the emergence of exact coherent states (ECS) in wallbounded
turbulent shear flows. The QL reduction involves a decomposition into mean
and fluctuation components and retention of fluctuation/fluctuation
nonlinearities only where they feed back on the mean dynamics. Although
sometimes invoked as an ad hoc simplification, the QL approximation
can be justified asymptotically for certain flows exhibiting temporal scale
separation, as will be demonstrated here through two complementary examples.
In the first example, a new type of acoustically driven mean flow is
identified and analyzed. Specifically, it is shown that when a
highfrequency acoustic wave of small amplitude ε interacts with a
stratified fluid, an unusually strong form of acoustic streaming can occur,
with the timemean flow arising at O(ε) rather than the more
commonly realized O(ε^{2}) value. The resulting twoway
coupling between the wave and streaming flow is selfconsistently captured
in a QL dynamical system. In the second illustration, a QL model of strongly
stratified turbulent shear flows is derived. Spectrally nonlocal energy
transfers, associated with smallscale nonhydrostatic instabilities induced
by the relative horizontal motion of largescale hydrostatic eddies, are
economically represented. The model is used to compute ECS in strongly
stratified Kolmogorov flow and to evaluate the mixing efficiency achieved by
these nonlinear states. For both the wave and sheardriven systems, new
asymptotic analyses are developed that enable integration of the dynamics
strictly on the slow time scale associated with the mean flow, yielding
significant computational efficiencies while simultaneously promoting
physical insight.
Greg Chini is Professor of Mechanical Engineering and CoDirector of the
Integrated Applied Mathematics Ph.D. Program at the University of New
Hampshire. He earned his doctorate in Aerospace Engineering at Cornell
University, with a focus on a fluid mechanics and applied mathematics, and
has held visiting positions at Nottingham University, Caltech, the
Institute for Pure and Applied Mathematics (IPAM) at UCLA, and the Kavli
Institute for Theoretical Physics (KITP) at UCSB. In 2016, he was elected
to the faculty of the Woods Hole Summer Program in Geophysical Fluid
Dynamics. Prof Chini's research centers on the application of nonlinear
mathematics and highfidelity numerical simulations to important
environmental, energy, and resource challenges facing society. Specific
research themes include selforganization and extreme transport in fluid
turbulence, multiscale phenomena in geophysical fluid dynamics and
geophysics, and mathematical modeling of energy and resource systems.
Some implications of selfsimilarity in canonical wall turbulence
Beverley McKeon
Caltech
3.30pm Monday 17 December 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
There has been much recent progress with regards to characterizing
selfsimilar behavior in wall turbulence in experiments, in simulation, and
in the mean and instantaneous forms of the Navier–Stokes equations.
We identify commonalities and differences between these observations, and
draw some conclusions concerning the requirements for selfsimilarity and
selfsustaining processes in wall turbulence. Recent developments with
respect to resolvent analysis are exploited to identify lowrank
representations of these processes, their signatures and their limitations
in physical and spectral space. We close with a discussion of some
outstanding challenges related to the existence, selfsustenance and
modeling of selfsimilar solutions and structures in the canonical
flows.
The support of the U.S. Air Force Office of Scientific Research under grant
FA 95501610361 and the U.S. Office of Naval Research under grant
N000141712307 is gratefully acknowledged.
Beverley McKeon is Theodore von Karman Professor of Aeronautics at the
Graduate Aerospace Laboratories at Caltech (GALCIT). Her research interests
include interdisciplinary approaches to manipulation of boundary layer flows
using morphing surfaces, fundamental investigations of wall turbulence at
high Reynolds number, the development of resolvent analysis for modeling
turbulent flows, and assimilation of experimental data for efficient
loworder flow modeling. She was the recipient of a Vannevar Bush Faculty
Fellowship from the DoD in 2017, the Presidential Early Career Award
(PECASE) in 2009 and an NSF CAREER Award in 2008, and is an APS Fellow and
AIAA Associate Fellow. She is the past editorinchief of Experimental
Thermal and Fluid Science and currently serves as an associate editor of
Physical Review Fluids, and on the editorial boards of the AIAA J., Annual
Review of Fluid Mechanics and Experiments in Fluids. She is the APS
representative and Vice Chair Elect of the US National Committee on
Theoretical and Applied Mechanics.
Harnessing the energy of wave driven turbulence at a fluid surface
Nicolas Francois
Australian National University
3.30pm Friday 7 December 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
When a laminar flow becomes turbulent, its energy is spread over a range of
scales in a process named energy cascade. It has recently been discovered
that turbulent flows can be forced by steep Faraday waves at a fluid
surface. Those flows possess features of twodimensional turbulence. In
particular, an inverse energy cascade has been identified and a substantial
amount of energy is stored into the turbulent fluctuations. An interesting
question is whether it is possible to efficiently use the energy of this
strongly outofequilibrium state.
In the wave driven turbulence, we show how to create floating devices able
to extract energy from the turbulent motion fluctuations by coupling with
underlying features of the energy cascade. The operational principle of
these devices relies on the rectification of the chaotic motion of
correlated bundles of fluid trajectories. By changing the shape of the
device, we can turn it into a vehicle or a rotor powered by
turbulence.
Nicolas Francois was awarded his PhD in physics of fluids and polymers from
the Université de Bordeaux. Since 2012, Nicolas has worked as an
experimentalist in the Physics of Fluids Laboratory at the Australian
National University. Nicolas studies Lagrangian aspects of Turbulence and
surface hydrodynamics notably in the recently discovered Faraday wave
driven turbulence. He is also interested in the physics of complex fluids
and granular matter.
Multiscale interactions between the lower atmosphere and the urban canopy
Karin Blackman
CNRS
12.30pm Tuesday 20 November 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The urban boundary layer consists of complex coherent structures, such as
largescale low momentum regions and intermittent turbulent sweeps and
ejections, which are responsible for the transport of heat, momentum and
pollution. Although these structures have been well identified
qualitatively, their quantitative relationship is still unknown. Wind tunnel
modelling of flow over simplified rough terrain consisting of either
threedimensional or twodimensional roughness elements are able to
reproduce these structures and are used to investigate the nonlinear
relationship between largescale momentum regions and smallscales induced
by the presence of the roughness. As the temporally resolved smallscale
signal is not available Linear Stochastic Estimation is used to decompose
the flow into large and smallscales and confirm that the largescale
structures within the overlying boundary layer influence the smallscales
close to the roughness through a nonlinear mechanism similar to amplitude
modulation. Changing terrain configuration from 3D to 2D roughness results
in a modification of the nonlinear relationship closer to the shear layer
that develops near the top of the obstacles. Triple decomposition of the
kinetic energy budget confirms that the nonlinear relationship that exists
between largescale momentum regions and smallscales close to the roughness
is related to energy transfer between these structures. Application of an
existing predictive model shows that the canopy flow regimes influences both
the superposition and amplitude modulation close to the roughness. Finally,
a combination of roughness geometries and Reynolds numbers are used to
validate the predictive model in the urban boundary layer.
Dr Blackman obtained her PhD from Ecole Centrale de Nantes and is now
a researcher in atmospheric mechanics and turbulence at CNRS.
Vortex formation on surging airfoils and high advance ratio rotors
Anya Jones
University of Maryland
3.30pm Thursday 8 November 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Experiments were performed on wing surging in a water tank, a swept wing
pitching in a wind tunnel, and a Machscaled slowed rotor at high advance
ratios. Timeresolved particle image velocimetry was used to characterize
the flow field around a blade element in the reverse flow region of the
rotor, and near the center of the wing in the nonrotating experiments. On
the rotor, four dominant flow structures were observed: the reverse flow
starting vortex, the blunt trailing edge wake sheet, the reverse flow
dynamic stall vortex, and the tip vortex. As advance ratio increases, the
duration of reduced time that the blade element spends in the reverse flow
region also increases. This affects the strength, trajectory, and predicted
vortexinduced pitching moment of the reverse flow dynamic stall vortex. The
results of this characterization and sensitivity study are compared to the
more canonical models of flow reversal and separation. The threedimensional
rotor flows are found to have many similarities to canonical
twodimensional models.
Anya R. Jones is an Associate Professor in the Department of Aerospace
Engineering at the University of Maryland, College Park. She received her
PhD in Aerodynamics from the University of Cambridge, United Kingdom, her
S.M. in Aeronautics and Astronautics from MIT, and her B.S. in Aeronautical
and Mechanical Engineering from Rensselaer Polytechnic Institute. Her
research is focused on the experimental fluid dynamics of unsteady and
separated flows. Her current projects focus on the flow physics of
largeamplitude gust encounters, separated and reverse flow rotor
aerodynamics, and flight through airwakes and other unsteady environments.
Prof. Jones has been awarded the AFOSR Young Investigator Award, NSF CAREER
Award, and the Presidential Early Career Award for Scientists and Engineers
(PECASE). Recently, she was awarded a Fulbright Scholar Award to the
Technion in Haifa, Israel and an Alexander von Humboldt Research Fellowship
to TU Braunschweig in Germany. She is currently chair of a NATO Research
Technology Organization task group on gust response and unsteady
aerodynamics, an associate fellow of AIAA, and a member of the Alfred
Gessow Rotorcraft Center.
Spatially localized structures in driven dissipative systems: theory and applications
Edgar Knobloch
University of California Berkeley
3.30pm Friday 2 November 2018
KevinMechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Spatially localized structures arise frequently in driven
dissipative systems. In this talk I will describe a number of
examples from different physical systems, followed by a discussion
of the basic ideas behind the phenomenon of nonlinear
selflocalization that is responsible for their existence. I will
illustrate these ideas using a simple phenomenological model and
explain why the qualitative predictions of this model help us
understand the properties of much more complicated systems
exhibiting spatial localization, and specifically those arising in
fluid mechanics.
Edgar Knobloch studied Mathematics at the University of Cambridge.
In 1974 he received a J.F. Kennedy Scholarship to study theoretical
astrophysics at Harvard University. After receiving his PhD in 1978
he was a Junior Fellow of the Harvard Society of Fellows and a
Research Fellow at St John's College, Cambridge. He has been a
Professor of Physics at the University of California, Berkeley, ever
since. His interests range from dynamical systems theory, chaotic
dynamics, pattern formation, all the way to materials science and
geophysical and astrophysical fluid dynamics. He is a Fellow of the
American Physical Society and the Society for Industrial and Applied
Mathematics. He holds honorary doctorates from Université
Paul Sabatier in Toulouse, France, and Universidad
Politécnica de Madrid, Spain.
Experimental measurement of threedimensional density fields and the coupling of direct numerical simulations to experiments
Callum Atkinson
Monash University
3.30pm Friday 26 October 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
While the last 20 years have seen significant advances in our ability to
experimentally measure micro to metre scale instantaneous velocity fields
(including timeresolved volumetric measurements), the measurement of fluid
density and temperature fields is far less evolved. For many quantities in
compressible and heated flows, this requires us to rely on computationally
expensive simulations, generally at Reynolds numbers far below those we
desire. Even in incompressible flows, our best velocity measurements, while
able to readily capture large scale information, are able to match the
fidelity of direct numerical simulations. This presentation will focus on
recent developments towards providing volumetric instantaneous density
measurement in compressible flows, along with attempts to use large scale
experimental data as an input to drive the convergence of direct numerical
simulations, similar to how field observations are used to enhance weather
predictions.
Dr. Atkinson received his PhD in Mechanical Engineering in 2012 as a
Cotutelle PhD between Monash University and Ecole Centrale de Lille in
France on the development and application of threedimensional measurement
techniques for investigating the 3D structure of wallbounded turbulence.
This included the development of the MLOS approach that is now widely used
in commercial software for tomographic particle image velocimetry. His
postdoc work focused on the experimental establishment of a
selfsimilar adverse pressure gradient turbulent boundary layer and
complementary direct numerical simulations. He was awarded an ARC Discovery
Early Career Researcher Award (DECRA) fellowship in 2016 and is currently
developing experimental techniques and facilities for the simultaneous
measurement of fluid temperature and velocity fluctuations in heated
boundary layers over natural and engineered surface roughness, while looking
at means to directly couple the relative strengths of the optical
measurements with higher fidelity direct numerical simulations.
Multiphase fluid behaviour and thermal characteristics in flow through curved ducts
Tilak Chandratilleke
Curtin University
3.30pm Friday 19 October 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Fluid flow behaviour in curved passages is fundamentally different to that
in straight channels due to the secondary flow induced by centrifugal
effects from passage curvature. Such flows have characteristic vortex
structures producing spiralling fluid motion through curved passages, hence
promoting fluid mixing even under laminar flow conditions and enhancing wall
heat transfer process. Secondary flow also leads to hydrodynamic instability
under certain flow conditions, introducing additional vortices to the flow
for more pronounced fluid mixing. The secondary flow structures in
multiphase fluids are much more complex than in single phase fluid since
the individual fluid phases are affected differently by the centrifugal
forces. This presentation outlines the current research knowledge in this
field, focussing on specific contributions made by the author towards the
scientific understanding of the single and twophase flow through curved
ducts and their thermal characteristics.
Professor Tilak Chandratilleke is the Head of Mechanical Engineering
Discipline at Curtin University, Perth, Western Australia. He obtained his
PhD in twophase flow and boiling heat transfer from the Cambridge
University in the United Kingdom, supported by Trinity College, Cambridge
and the UK Atomic Energy Authority. He has worked as a consulting engineer
in the UK and the USA for several years prior to joining the academia. His
experimental and numerical research spans from the discovery of microlayer
theory for bubble growth in boiling to pulsedjet electronic cooling,
microfluidics, thermal radiation, and single and twophase heat transfer in
curved flow passages (topic of the presentation). He has contributed to
thermal industry applications with unique and patented concepts, including
the radiation shield for preventing excessive heating of water pipe network
in Western Australia and the development of Thermoelectricbased
fridge/freezer. He serves as an editor for the Institution of Mechanical
Engineers (UK) Journals, as national chair of the Australasian Thermal
Engineering Society (AFTES), and an executive member of the Engineers
Australia WA Mechanical Panel. He was a member of the ARC College of Experts
until early this year.
Subcritical transition in wallbounded shear flows
Jacob Cohen
Technion
3.30pm Friday 12 October 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The current study focuses on a subcritical transition scenario of
wallbounded flows which are stable with respect to infinitesimal small
disturbances (Couette flow and Plane Poiseuille flow for subcritical
Reynolds numbers). Accordingly, a linear transient growth mechanism is
initiated by four decaying normal modes, the initial structure of which
corresponds to counterrotating vortex pairs. It is shown that the four
modes are enough to capture the transient growth mechanism. More
importantly, it is demonstrated that the kinetic energy growth of the
initial disturbance is not the key parameter in this transition mechanism.
Rather, it is the ability of the transient growth process to generate an
inflection point in the wallnormal or spanwise directions and consequently
to make the flow susceptible to a threedimensional disturbance leading to
transition to turbulence. The model utilizes separation of scales between
the slowly evolving baseflow and the rapidly evolving secondary
disturbance. Because of the minimal number of modes participating in the
transition process, it is possible to follow most of the key stages
analytically, using the multiple time scales method. It is only due to
nonlinear effects that the base flow becomes unstable with respect to an
infinitesimal disturbance. The theoretical predictions are compared with
direct numerical simulations and very good agreement with respect to the
growth of the disturbance energy and associated vortical structures is
observed, up to the final stage just before the breakdown to turbulence.
Finally, the mechanism governing these transition stages (in the odd
transition scenario) is very similar to the one described by the vortex
dynamics model, previously proposed by the authors to explain the
experimentally observed generation of a train of hairpins.
Jacob Cohen is a Professor and Sydney Goldstein Chair in Aeronautical
Engineering at the Faculty of Aerospace Engineering, Technion – Israel
Institute of Technology. He is the former Dean of the faculty (20152018)
and currently serves as the head of the Technion Wind Tunnel Complex. Jacob
received his Bachelor (1980) and Master (1982) degrees in Mechanical
Engineering at the University of TelAviv, Israel, and PhD (1986) at the
AME department in University of Arizona. He then completed two and a half
years as a Postdoc fellow at MIT before returning to the Israel (Technion).
His main research interests are in experimental, theoretical and numerical
study of laminarturbulent transition, study of the evolution and control of
coherent structures in wall bounded and free shear flows, hydrodynamic and
thermal instabilities and unsteady phenomena.
Reconstruction and estimation of flows using resolvent analysis and dataassimilation
Sean Symon
University of Melbourne
3.30pm Friday 5 October 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
A flow reconstruction methodology is presented for incompressible,
statistically stationary flows using resolvent analysis and
dataassimilation. The only inputs necessary for the procedure are a rough
approximation of the mean profile and a single timeresolved measurement.
The objective is to estimate both the mean and fluctuating states of
experimental flows with limited measurements which do not include pressure.
The input data may be incomplete, in the sense that measurements near a body
are difficult to obtain with techniques such as particle image velocimetry
(PIV), or contaminated by noise. The tools developed in this talk are
capable of filling in missing data and reducing the amount of measurement
noise by leveraging the governing equations. The reconstructed flow is
capable of estimating fluctuations where timeresolved data are not
available and solving the flow on larger domains where the mean profile is
not known.
The first part of the talk is centered on developing the tools necessary for
this procedure. The second part of the talk discusses the reconstruction of
flow around a NACA 0018 airfoil at zero angle of attack and a chordbased
Reynolds number of 10250. The mean profile, obtained from PIV, is
dataassimilated and used as an input to resolvent analysis to educe
coherent structures in the flow. The resolvent operator for nonamplified
temporal frequencies is forced by an approximated nonlinear forcing. The
amplitude and phase of the modes are obtained from the discrete
Fouriertransform of a timeresolved probe point measurement. The final
reconstruction contains less measurement noise compared to the PIV
snapshots and obeys the incompressible Navier–Stokes equations.
Sean Symon completed his undergraduate degree in Aerospace Engineering at
the University of Maryland. He then completed his masters in Aeronautics at
the California Institute of Technology and participated in the masters
exchange program between GALCIT and Ecole Polytechnique. In France, he
received a masters in fluid mechanics and worked with David
Quéré studying drop dynamics on macrotextured
superhydrophobic surfaces. Upon returning to Caltech, Sean joined Beverley
McKeon's group working on dataassimilation and resolvent analysis. He is
now working as a postdoc with Simon Illingworth and Ivan Marusic studying
the attached eddy model in the context of the linearized
Navier–Stokes equations.
Enhancing heat transfer by inducing resonance in natural convection boundary layers
Chengwang Lei
University of Sydney
3.30pm Thursday 27 September 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
In natural convection systems, the rate of heat transfer depends on the
state of the thermal boundary layers forming on heat transfer surfaces,
which may be laminar, transitional or turbulent. The heat transfer rate is
much higher in the turbulent state than that in the laminar state. The
transition of the thermal boundary layers from laminar to turbulent state
may be advanced by either active or passive techniques. In this
presentation, I will introduce a unique strategy to enhance heat transfer by
triggering resonance in thermal boundary layers. Resonance occurs when a
system is excited at frequencies close to its natural frequency. As a
result, strong oscillations of the system are induced. Resonance may take
place in a thermal boundary layer if it is perturbed at its characteristic
(natural) frequency. I will describe the process for determining the
characteristic frequency of thermal boundary layers and the application of
resonance for enhancing heat transfer. Both active and passive strategies
for triggering resonance and enhancing heat transfer will be
demonstrated.
Chengwang Lei is currently a professor and Deputy Head of School of Civil
Engineering at The University of Sydney, Australia. He is also the Deputy
Director of the Centre for Wind, Waves and Water. Chengwang received his
Bachelor (1988) and Master (1992) degrees in Mechanical Engineering at
Huazhong University of Science & Technology in China and PhD (2000) in
Civil and Resource Engineering at The University of Western Australia. His
main research interest is in fundamental fluid mechanics related to buoyancy
driven flows with environmental, industrial and domestic applications. His
research involves experimental modelling, numerical simulation and
analytical investigation of diverse thermal flow problems. In recent years
Chengwang has been conducting concentrated research on solar thermal based
passive strategies for building ventilation and thermal comfort. He has
published widely in the international literature and at leading national and
international conferences. More information about Prof Chengwang Lei may be
found on his profile page
here.
On the scaling of the statistics of adversepressuregradient turbulent boundary layers
Atsushi Sekimoto
Osaka University
12.30pm Tuesday 25 September 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
A characteristic boundary layer thickness is introduced to scale turbulence
statistics in zero/adversepressure gradient turbulent boundary layers
(ZPG/APGTBLs). The characteristic length scale, which is termed the
`shear thickness', corresponds to the location which corresponds to the end
of an actively sheared region in a turbulent shear flow, where the
nondimensional Corrsin shear parameter is approximately constant. Using the
friction and pressure velocity, the Reynolds stresses in TBLs over a wide
range of APGs collapse with those in a ZPGTBL. The present scaling is used
to analyse the mean velocity and the kinetic energy balance in TBLs, and
compare them to other shear flows. Furthermore, a scaling for smallscale
properties will also be presented. The present scaling for TBLs over a wide
range of pressure gradients is considered to be key to the development and
application of turbulent models.
In 2011, the speaker completed his Ph.D. in thermofluid mechanics group at
Osaka University, and he joined the Fluid Mechanics group in the Technical
University of Madrid (UPM) as a postdoctoral fellow. In 2016, he worked as
a research fellow in the Laboratory for Turbulence Research in Aerospace
& Combustion (LTRAC) at Monash University. He is now Assistant Professor
in the Dept. of Chemical Engineering in the School of Engineering Science at
Osaka University. His main research interests are on the turbulence
structures and the control of the temporalspace dynamics.
Accurate and efficient methods for reducedcomplexity modelling in fluid mechanics
Scott Dawson
Caltech
3.30pm Friday 21 September 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
This talk will explore several recent developments that improve upon the
efficiency, accuracy, and theoretical understanding of methods for modal
decomposition and reducedorder modelling in fluid mechanics. First, I will
propose a method for the analytic approximation of the shape of resolvent
modes in sheardriven turbulence, based on approximations to pseudospectral
modes of scalar operators. This approach provides a theoretical framework
for understanding the origin of observed structures, and gives a method for
mode estimation without the need for large numerical computations. Next, I
will focus on the dynamic mode decomposition (DMD), which provides a means
of extracting dynamical information from fluids datasets. I will show that
DMD is biased to sensor noise, and will subsequently present a number of
modifications to the DMD algorithm that eliminate this bias, even when the
noise characteristics are unknown. Lastly, I will discuss a number of
approaches by which linear datadriven modelling techniques may be utilised
and extended for accurate modelling of nonlinear systems.
Scott Dawson is currently a postdoctoral scholar within the Graduate
Aerospace Laboratories at the California Institute of Technology. Prior to
this, he completed his Ph.D. in Mechanical and Aerospace Engineering at
Princeton University, and honours degrees in Mechanical Engineering and
Mathematics at Monash University. In January, he will commence a position as
an assistant professor at the Illinois Institute of Technology. His research
interests include modelling, optimisation and control in fluid mechanics,
with a particular focus on turbulent shear flows and unsteady aerodynamic
systems.
Incomplete mixing in porous media
Daniel Lester
RMIT University
3.30pm Friday 14 September 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Experimental image of evolving dye plumes resulting from Stokes flow over
packed glass spheres.
Mixing, transport, reaction and dispersion of fluids and solutes in
heterogeneous porous media is a fundamental problem of widespread importance
in nature and engineered systems, ranging from geophysical and biological
systems to microfluidics and chemical processing. Despite over a century of
research, quantification of fluid mixing in heterogeneous porous media is
largely based on a macrodispersion (wellmixed) paradigm that does not
resolve incomplete mixing at either the pore or Darcyscales. In recent
years, significant advances have been made to better understand, predict and
control mixing, transport and dispersion across scales using a combination
of Lagrangian methods (dynamical systems theory, Hamiltonian chaos) and
stochastic modeling (continuous time random walks, Markov models) to develop
ab initio models of such phenomena. In this talk I shall present a brief
overview of these advances and models for fluid mixing at the pore and
Darcyscales, and discuss future research directions at the interface of
porous and open flows.
Daniel completed his PhD in Chemical Engineering at University of Melbourne
in 2003 on the deformation, flow and separation of concentrated colloidal
suspensions prior to undertaking a Postdoc in the Advanced Thermofluids Lab
at CSIRO on the topic of Lagrangian chaos and mixing in 2005. He joined the
(then) Mathematics, Statistics and Informatics division of CSIRO as a
Research Scientist in 2007 prior to joining RMIT University as a Senior
Lecturer in 2014, where his current research interests involve the rheology
and flow of complex fluids, fluid chaos and mixing, and transport and
reactions in porous media.
Broadband noise predictions of an axial compressor operating at low Reynolds number
Oscar Wilsby
University of Melbourne
3.30pm Friday 7 September 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Government regulations on noise are moving the importance of acoustic
requirements to earlier stages of consumer product design. For
turbomachinery applications such as axial fans and compressors, it is
crucial for the design engineer to be able to accurately capture noise
trends and understand the minimum noise level of a particular design. To be
able to make noise predictions in an industrial setting, low order CFD must
be used to produce accurate statistics of turbulence. However the modeling
assumptions inherent in these methods make this a challenging task. This
talk investigates the use of wallresolved LES to study noise sources of an
axial compressor operating at low Reynolds number and highlights the
deficiency of current RANS based CFD for acoustic predictions.
Oscar Wilsby completed his undergraduate, masters and PhD at the University
of Cambridge, working on aeroacoustic predictions for industry under
sponsorship of Dyson Technologies Ltd. He recently started working in
Professor Richard Sandberg's group on developing new data driven models for
airfoil noise prediction.
The role of convection on the basal melting of Antarctic ice shelves
Mainak Mondal
Australian National University
3.30pm Friday 31 August September 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Schematic of a sloping Antarctic ice shelf along with a enlarged snapshot of
the boundary layer flow field (inset). The alongslope velocity
(ζηplane) and crossslope convective velocity (yηplane) and
spatial distribution of meltrate (ζyplane) at the ice interface is
shown here at ambient temperature, T
_{b} = 1° C and ambient
current, U
_{b} = 0.05 m/s.
Melting of Antarctic ice shelves has a large impact on ocean circulation,
future sea level rise and the global climate. Most of the ice shelves in
Antarctica are sloped forward into the ocean, forming an ice cavity
underneath. The turbulent transport of heat and salt into the ice interface
melts the ice and drives convective wall plumes that play a crucial role in
the basal melting. Ice bathymetry and various ambient flows like tides,
waves and submesoscale eddies further modify the plumes. The regional and
global ocean models work at scales over 100 meters and rely on crude
subgrid scale parameterization of convection and turbulent processes at the
iceocean boundary layer, causing uncertainties in the estimation of the
melt rate.
I have examined the role of micro scale turbulent processes at the ice ocean
boundary using Direct Numerical Simulation (fully resolving convection and
turbulence, see figure). I carry out simulations by varying the slope of the
ice shelves, changing the strength of ambient flow and including subglacial
discharge. The results show that the melt rate is controlled by the slope of
the ice face with decreasing melt rate at shallower slopes. Over the
geophysical flow regime, convection is the key parameter that controls the
heat and salt transfer into the ice face and hence the melt rate. The
results from this study significantly widen our present understanding of
basal melting and can improve the iceocean parameterizations for
largescale models.
Mainak did his bachelors with major in physics and later a postgraduate
diploma in astrophysics from BIFR India. His earlier research interest was
on stellar dynamics. As a summer intern, he did an observational project on
'Morphological Evolution of Planetary Nebulae' from Indian Institute of
Astrophysics. He later moved into geophysical fluid dynamics and did a
master in atmospheric science from IIT Kharagpur. His master thesis was on
'Effects of aerosol on BOB tropical cyclone Phailin'. He became
interested in boundary layer turbulence and found the very interesting
project at ANU on 'Turbulent melting of the Antarctic ice shelves'. Over his
PhD he explored the turbulence properties under the ice ocean boundary and
how melting occurs right at the ice ocean boundary.
Bluff body wake control
Jonathan Morrison
Imperial College
3.30pm Friday 24 August 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The coherent structures of a turbulent wake generated behind a bluff
axisymmetric body are investigated experimentally at a diameter based
Reynolds number ~ 2 × 10^{5}. Spectral and proper
orthogonal decomposition of base pressure measurements indicates that the
most energetic coherent structures retain the structure of the
symmetrybreaking laminar instabilities appearing as unsteady vortex
shedding with azimuthal wavenumber, m = ±1. In a rotating reference
frame, the shedding preserves the reflectional symmetry and is linked with a
reflectionally symmetric mean pressure distribution on the base. Due to a
slow rotation of symmetry plane of the turbulent wake around the axis of the
body, statistical axisymmetry is recovered in the long time average.
We investigate the effects of pulsed jet blowing on the turbulent wake. The
jet is formed from an annular orifice situated immediately below the
trailing edge and oriented in the direction of the freestream. By varying
the frequency and amplitude of the perturbation, we achieve a mean pressure
increase on the base of the body of up to 33%. Modal decomposition of the
basepressure fluctuations reveals a nonlinear coupling between the
symmetric (m = 0) perturbation and higher order azimuthal modes
(m = ±1, ±2) that results in an asymmetric mean pressure
distribution. The pressure recovery is shown to be a broadband suppression
of energy across all modes with no preferential selection.
Lastly, we apply the modelling approach for the axisymmetric body described
above to the bistable mode of a rectilinear bluff body wake. We demonstrate
the validity of the model and its Reynolds number independence through
timeresolved base pressure measurements of the natural wake. Further,
oscillating flaps are used to investigate the dynamics and timescales of
the instability associated with the "flipping" process, demonstrating that
they are largely independent of Reynolds number. The modelling approach is
then used to design a feedback controller that uses the actuators to
suppress the bistable mode. The controller is successful, leading to
concomitant reductions in both lateral and streamwise forces. Most
importantly the controller is found to be efficient, the actuator requiring
only 24% of the aerodynamic power saving.
Jonathan Morrison holds the chair of Experimental Fluid Mechanics in the
Department of Aeronautics at Imperial College. Recent work has focused on
fundamentals of turbulent flow and control including novel approaches to
flow control. He is currently exploring instabilities in transitional flows
as part of the LFCUK Programme Grant and the correspondence between the
scalar and momentum fields as part of the Transpiration Cooling Systems
Programme Grant. Other recent work has developed novel dragreduction
techniques for bluffbody flows both in open loop and with feedback
control. He is also exploring travelling surface waves for turbulent drag
reduction with support from Airbus. He is currently a member of the
"Aircraft of the Future" Advisory Group of the ATI. He is Director of, and
chairs the Management Board of the National Wind Tunnel Facility (NWTF),
funded by EPSRC and the ATI. He led an exhibit at the Royal Society Summer
Exhibition, 2014, "Smart Wing Design: Science Imitating Nature".
Highfidelity computational fluid dynamics (CFD) in industry: A retrospective and next steps
Vittorio Michelassi
Baker Hughes
3.30pm Friday 17 August 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The experience with nonreactive highfidelity computational fluid dynamics
(CFD) for aerothermal applications in General Electric spans across
lowpressure turbines, highpressure turbines, radial and axial compressors
and turbine centerframes. Direct numerical simulation (DNS) and largeeddy
simulation (LES) were used for the investigation of design parameters impact
on performance across a wide design space leading the way for additional
testing and design changes that unlock further performance improvement. The
scaleresolved simulations dataset was also used for detailed
postprocessing that shed light on some of the fundamental physical
processes that ultimately drive aerodynamic and thermal efficiency. The
large CFD data base was also used to improve unsteady Reynoldsaveraged
Navier–Stokes (URANS) calculations, that is and will be the
workhorse in daily design iterations. This talk will first summarize the
results and impact obtained so far, and indicate the possible next steps
necessary for the full exploitation of scaleresolving CFD in
industry.
Prof Dr Vittorio Michelassi is Chief Consulting Engineer for Aerodynamics
at Baker Hughes, a GE Company, and GE Aviation. In his role he overlooks the
aerothermal design of gas turbine components as well as the improvement of
design tools for all energy conversion related activities. Prior to joining
GE Aviation he worked in General Electric Global Research as aerothermal
technologies Chief Engineer and from 2003 till 2011, he was principal
engineer and Manager Aero Design of General Electric Oil and Gas.
Before 2003 he was Professor of Gas Dynamics and Turbomachinery Aerodynamics
at the Universities of Firenze and Roma Tre, Italy. He received a Master in
Engineering from University of Florence, Italy, and a Master in Fluid
Dynamics from the Von Karman Institute for Fluid Dynamics, Rhode Saint
Genese, Belgium. He received his PhD from the University of Florence after
having conducted research at NASA Lewis Research Centre and Karlsruhe
Institute of Technology. He was visiting scientist at NASA Lewis, at the
Center for Turbulence Research in Stanford, at Karlsruhe Institute of
Technology. He participated several EUgranted research consortiums with
focus on turbomachinery and combustions where he gained a wide experience in
internal aerodynamics, with focus on turbine unsteady aerodynamics. He
worked in turbulence modelling applied to steady and unsteady
Reynoldsaveraged Navier–Stokes simulations, as well as largeeddy
and direct numerical simulations, where he pioneered the industrial
application of highfidelity CFD as a design investigation tool in
cooperation with academia. He is a member of ASME Turbomachinery Committee
and serves as a reviewer for international journals. He authored and
coauthored several journal and conference papers in the area of
turbomachinery design.
Optimal growth and twodimensionalisation in liquidmetal duct flows under a uniform transverse magnetic field
Greg Sheard
Monash University
3.30pm Friday 10 August 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
A transient growth analysis of linearised threedimensional disturbances is
conducted on a liquid metal flow in a duct with square cross section under a
uniform vertical magnetic field. This analysis reproduces published energy
amplifications at low Hartmann number, and for the first time reveals a
twodimensionalisation of optimal disturbance structures in the magnetic
field direction at higher Hartmann number. Thereafter the predicted energy
amplifications are in excellent agreement with a quasitwodimensional model
for MHD flow developed by Sommeria & Moreau (1982).
Greg Sheard obtained his PhD from Monash University in 2004. He subsequently
held an Australian Postdoctoral Fellowship, and since 2006 has been a
faculty member of the Department of Mechanical and Aerospace Engineering at
Monash University. His research is concerned with the application of
highorder numerical methods for computational fluid dynamics to the study
of fluid flows and their stability. This has seen him explore problems in
bluffbody wakes, rotating flows, natural convection, and
magnetohydrodynamics.
The character and mechanics of flowinduced noise production from a finite span airfoil
Danielle Moreau
University of New South Wales
3.30pm Friday 27 July 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Many realworld technologies employ an airfoil that is wallmounted and finite in
length with boundary layer impingement at the airfoilwall junction and flow over
the tip. Examples include submarine hydrofoils mounted to a hull, wind turbine
blades mounted to a hub or the stators in an aeroengine that are connected to an
outer wall. An important aspect of airfoil noise production that has received little
attention in the past is the influence of airfoil threedimensionality, boundary
layer impingement and flow at the tip on noise generation, which is the focus of
this seminar. Recent results will be presented from a series of airfoil flow and
noise measurement campaigns conducted in anechoic wind tunnels at Virginia Tech
(USA), the Brandenburg University of Technology (Germany) and UNSW. A combination of
acoustic array measurements, flow visualizations, surface pressure and unsteady wake
data are used to gain insight into the turbulent noise sources and the role of
threedimensional vortex flow near the airfoil tip and wall junction in noise
production.
Danielle Moreau obtained her PhD from the University of Adelaide in 2010. Following
PhD completion, she worked as a research associate at the University of Adelaide for
five years. During this time, Danielle investigated the mechanics of bioinspired
quiet airfoils and submarine hydrofoil noise generation. In 2015, Danielle moved to
UNSW in the position of lecturer. Her research focuses on the understanding and
control of flowinduced noise with the aim of quietening modern technologies.
Buoyancy and convection drive the ocean circulation
Taimoor Sohail
Australian National University
3.30pm Friday 13 July 2018
Mechanical Enginneering Seminar Room Level 3 (Room 311, Bldg 170)
Convection is a smallscale flow feature which exists in most fluid flows.
In the global ocean, convection is present wherever a buoyancy gradient is
present. Given the everpresent nature of convection in the ocean, it is
unfortunate that largescale ocean models cannot resolve this process. As a
result, there is a significant gap in the understanding of the impact of
convection on ocean circulation. Whilst research in the area is still scant,
it has become increasingly clear that convection may have profound impacts
on ocean circulation, particularly in the North Atlantic and Southern
Ocean.
To explore this, we employ a highresolution Direct Numerical Simulation to
model the Southern Ocean, whilst explicitly resolving all scales of fluid
flow, from millimetrescale turbulent convection to largescale jets and
overturning circulation. The idealised channel model consists of a surface
temperature gradient and constant surface wind stress, mimicking the
climatological conditions in the Southern Ocean. We find that convection
significantly enhances mixing and plays a major role in modifying the fluxes
of potential and kinetic energy the system. The energy fluxes are tightly
controlled by the buoyancy forcing (and resulting convection), with little
sensitivity to changing surface wind stress. In addition, the overall
mass and heattransport appears to be largely buoyancydominated, with
wind stress having a minimal impact on the system.
This research indicates that when fully resolved, buoyancyforcing and the
smallscale flows associated with it may have a major role in driving ocean
circulation compared to surface wind stress, overturning conventional wisdom
on the topic.
Taimoor Sohail is a PhD Candidate in the Climate and Fluid Physics group at
the Research School of Earth Sciences, Australian National University,
Canberra. Completing a Bachelor's degree in Mechanical Engineering from
Lafayette College, USA, in 2014, Taimoor moved on to climate change policy
research in Pakistan, working for a local think tank for two years. It was
there he was inspired to further explore climate science, and found it to be
a good fit for the engineering skills he had picked up over the years. He
began his PhD in 2016 under the supervision of Dr. Bishakhdatta Gayen and
Dr. Andy Hogg. Taimoor's main research focus is smallscale flow processes
in the ocean, including submesoscale fronts, internal waves and convection.
His eventual aim is to work towards tying largescale ocean modelling work
to more recent smallscale computational research conducted with DNS and LES.
Does aeolian sedimentation contribute to coral cay accretion and island development in the Maldives?
Mike Hilton
University of Otago
3.30pm Friday 6 July 2018
Mechanical Enginneering Seminar Room Level 3 (Room 311, Bldg 170)
The atolls of the Maldives contain over 1200 reef islands; including atoll
lagoon islands and numerous sand cays on reef platforms. Sand cays are
comprised entirely of biogenic sediments, primarily coral sand. Cay
formation at nodal zones has been attributed to wave refraction and
diffraction around and over reef platforms. They are unstable deposits that
may meander within these zones. Unvegetated sand cays are low and commonly
overwashed by local waves during high astronomical tides. They may also be
inundated by swell waves generated in the southern Indian Ocean and tsunami.
These processes are known to deposit sediment on vegetated islands, but
overwash is unlikely to contribute to cay accretion in the absence of
vegetation. There remains, therefore, the conundrum of how cays transition
to stable and forested islands? I hypothesize that aeolian sedimentation, in
conjunction with stranded organic debris and the growth of early
successional plant species, may contribute sufficient depth of sediment to
allow the development of nonsaline groundwater and the colonisation of
islands by forest tree species.
Wind speed and direction was observed at 1Hz over and 8day period in
February 2018 using Windsonic 2D anemometers mounted on a mast at 5.8m,
0.53m and 0.05m. Additional anemometers were positioned across the surface
of this terrace. Aeolian sedimentation was observed using Wenglor laser
particle counters over a period of 8 days, with swinging sand traps and
erosion/accretion stakes. Surface topography, nabkha and island morphology
was surveyed using a laser level to a datum established by RTKGPS and local
mean sea level (derived from RBR deployments).
Incident wind direction was mainly from the north east during the period of
fieldwork, consistent with the Northeast Monsoon (October to April).
Incident wind speed was typically 4–6m/s at 5.8m, however,
periods of wind speed in excess of 12m/s were recorded on two
occasions. These events, which were characterised by periods of relatively
high onshore wind speed lasting several minutes, followed by a reverse in
wind direction, appear to be driven by lowlevel outbursts under
cumulonimbus clouds. Wind speed at ground level (0.05m) during these events
reached 8m/s. Saltation and ripple development occurred during
these events, albeit the rates of sand flux were not high (with Wenglor
counts up to 200/s). Our observations occurred during the relatively weak
Northeast Monsoon. We conclude that aeolian sedimentation probably occurs
frequently on Maaodagalla, particularly during the more energetic Southwest
Monsoon.
The development of nabkha appears to make a significant contribution to
island elevation. The elevation of Maaodagalla does not exceed 1.0m above
the level of spring high tides and 0.6m above observed maximum wave runup.
Therefore, nabkha development has contributed most of the elevation (0.5m)
of the island above the level of wave runup. Of course, aeolian
sedimentation may be occurring concomitant with overwash processes. The
analysis of sediment texture and the GPR data is ongoing to determine the
nature of the aeolian facies across the island and on Mahutigalla. A
freshwater lens was found under Maaodagalla in almost all of the excavated
pits, which indicates the cays do not need to accrete much to generate
conditions for freshwater accumulation and the establishment of forest tree
species.
Associate Professor Hilton is a coastal geomorphologist at the University of
Otago, with interests in dune geomorphology, the biogeomorphology of
foredunes, flow over dunes, beachdune sedimentation, foredune response to
environmental stress, and the impact of invasive species on dune form and
function. He is the Secretary of the International Society for Aeolian
Research, and past executive member of the New Zealand Geographical Society,
New Zealand Coastal Society, IGBPLOICZ and received the New Zealand Order
of Merit in 2018 for services to coastal science and conservation.
Completion: Computed coronary arterial flow dynamics: from stented to rough surfaces
Winson Chen
University of Melbourne
3.30pm Friday 22 June 2018
Mechanical Enginneering Seminar Room Level 3 (Room 311, Bldg 170)
Coronary stenting as a standard treatment for coronary arterial diseases has
achieved a high success rate in recent years. However, poststenting
complications still affect a small but significant subset of patients.
Better understanding of the instent haemodynamic environment represents the
key to reveal the physics associated with these complications. Computational
fluid dynamic toolkits are employed to simulate pulsatile blood flow inside
stented curved arteries. Arterial curvature and stent malapposition
introduce pronounced adverse haemodynamic behaviours such as flow
recirculation. It consequentially enhances localised instent restenosis and
aggregation of activated platelets.
To understand the effect of stentinduced roughness on laminar pulsatile
blood flow, simplifications of stented artery geometries were made such that
key roughness parameters can be systematically investigated. The effect of
roughness parameters on laminar pulsatile pipe flow is quantified in a 2D
parametric space which could be relevant in the stent design to minimise
adverse haemodynamic behaviours.
Mass, energy and vorticity conservation for the rotating shallow water equations on a nonaffine cubed sphere geometry using mixed mimetic spectral elements
Dave Lee
Monash University
3.30pm Friday 15 June 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The preservation of conservation laws and leading order balance relations
in the discrete form helps to mitigate against biases and improves the
representation of dynamical processes for geophysical flows over long time
integrations. In this talk we will discuss the use of the mixed mimetic
spectral element method to preserve mass, vorticity and energy conservation,
as well as geostrophic balance, for the rotating shallow water equations
with optimal error convergence on the cubed sphere. The method is based on
the recently developed spectral element edge functions, which exactly
satisfy the fundamental theorem of calculus with respect to the standard
nodal basis functions. Compatible high order finite element spaces are
constructed via tensor product combinations of nodal and edge functions.
These allow for the annihilation of the curl by the divergence and the
preservation of the divergence theorem in the strong form, and the
annihilation of the gradient by the curl and the preservation of the
circulation theorem in the weak form, via Galerkin projections onto the
appropriate function spaces.
These mimetic properties are preserved independent of geometry, and the use
of the generalised Piola transformation between canonical and physical
space allows for both the preservation of conservation laws and the spectral
convergence of errors on the nonaffine geometry of the cubed sphere. These
properties are confirmed via results for standard test cases. Preliminary
results for 2D turbulence on the sphere and the dispersion relation for
high frequency waves will also be presented.
Dave completed his PhD in Applied Mathematics at Monash at 2014, where he
worked on the development of spectral element methods to model weakly
nonlinear internal ocean waves. He then undertook a post doctoral position
at Los Alamos National Laboratory, where he worked on the development of
hybrid semiLagrangian / discontinuous Galerkin methods for transport in
ocean models, and with the generous support of his supervisors initiated an
independent research project into the use of mixed mimetic spectral elements
for geophysical flows. Prior to his PhD he worked as a computational
scientist at VPAC. He is currently a research associate in the Department of
Mechanical and Aerospace Engineering at Monash.
The cascade of energy in an anisotropic homogeneous turbulence experiment
Douglas Carter
University of Minnesota
3.30pm Friday 8 June 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
One of the most challenging aspects of turbulence is the dynamics of the
energy cascade. This is due to its nonlinear nature, which is intimately
linked to the ultimate breakdown of large eddies into small eddies. The
early ideas of a physical cascade introduced by Richardson were expanded
upon in the classic work of Kolmogorov such that the breakdown of eddies was
thought to occur locally via adjacent scales. In more recent years evidence
has mounted which shows that transfers of energy are often nonlocal, occur
across disparate scales, and can even cascade in the inverse direction. Here
we present data from a 2D particle image velocimetry (PIV) experiment
performed in a jetstirred zeromean flow turbulence box in air. The
turbulence can be tuned to have a large scale anisotropy ratio u'/v' (where
u' is along the axial direction of the jets and v' along the radial
direction) between 1.4 and 1.7. In this range the Reynolds number based on
the Taylor microscale varies approximately between 300 and 500. Employing
the secondorder structure function, we show that anisotropy persists into
(and through) the inertial scaling range. The thirdorder structure
function, in the context of the Karman–Howarth–Monin equation,
reveals that the cascade of energy is split such that energy moves from
small to large scales along the radial direction and from large to small
scales along the axial direction. We further find that the variation in
largescale turbulent kinetic energy is linked to the presence (or absence)
of dissipative structures, which play a central role in the cascade. By
conditioning the thirdorder structure function on PIV samples with
"hyperactive" or "sleeping" levels of smallscale activity, we find the
cascade of energy has a unique footprint for these distinct states. These
results are a marked departure from the theory of Kolmogorov and imply that
the central quantities which govern the overall energy transfer are
nonlocal and reveal a complex structure in scale space.
Douglas Carter is a PhD candidate from the University of Minnesota and
graduate student researcher at Saint Anthony Falls Laboratory in
Minneapolis, Minnesota. Prior to graduate school he obtained a BS in
Mechanical Engineering from the University of New Hampshire in 2014. His
interests include fundamental turbulence, innovation in designing and
performing measurements, as well as environmental flows such as dust storms
(particle–turbulence interaction) and rain clouds
(droplet–turbulence interaction).
Electromechanical energy harvesting from flutter of cantilevers in axial and crossflows
Richard Howell
Curtin University 
Website
3.30pm Friday 1 June 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The presentation will consist of two talks given at
FSSIC 2017.
1. We model the fluidstructure interaction of nonlinear flutter of a
cantilever mounted upon a nonlinear spring at the clamp in a uniform axial
flow. This permits us to compare results with those from a hybrid nonlinear
system (a linear system mounted on a nonlinear spring) and so to assess the
change in fundamental physical phenomena owing to the introduction of full
nonlinear structural and fluidmechanics. We use numerical simulation for
the nonlinear system while our statespace solution of the corresponding
linear system is used to guide the choice of parameters in the
investigation. We show that above the flow speed of flutteronset for small
disturbances, amplitude growth leads to nonlinear saturation so that the
system settles into finiteamplitude oscillations. The frequencies of these
oscillations evidence the dualfrequency characteristics of mount
oscillation observed in physical experiments. When the natural frequency of
the mount is low, we show that for a range of increases above the linear
critical speed the linear hybrid and nonlinear systems evidence the same
frequency phenomena. However, the linear hybrid system evidences larger
oscillation amplitudes than the nonlinear system. Therefore, the
stabilising effect of the nonlinear structural terms outweighs the
destabilising effect of the nonlinear fluid terms.
2. A twin cantilever system is springmounted on a bearing and investigated
experimentally in a cross flow in a wind tunnel; two types of bearing are
used, cylindrical with one degree of freedom and spherical with three. By
comparing the two systems, it is found that the spherical bearing system is
slightly more unstable and operates at a higher oscillation frequency, hence
having more favourable conditions for energy harvesting. The physical
manifestation of the destabilising effect of the spherical bearing is seen
in the yawing
figureofeight forward and backward motion of the
cantilevers about the mount, which can be observed by looking directly down
on the setup. For the range of spring stiffnesses used in this
investigation, the power producing capabilities of both systems continue to
increase as system natural frequency reaches higher values.
Fluid dynamic properties of irregular, multiscale rough surfaces
Thomas Jelly
University of Melbourne
3.30pm Friday 25 May 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Surface roughness increases fluid dynamic drag and induces a rise in the
mean momentum deficit called the roughness function. This has implications
for engineering systems which involve surfaces that, hydrodynamically
speaking, are rough as opposed to smooth. Some examples include: the
aerothermal characteristics of ablated turbine vanes; the frictional
resistance of biofouled marine vessels and the levels of wall shear stress
in industrialgrade steel pipes. As a result, the fluid dynamic properties
of practical roughness topographies are of significant interest.
The roughness function is itself a function of the roughness height and the
roughness topography. Engineering rough surfaces with an equal roughness
height but different topographies can give rise to roughness functions that
vary by a factor of four. While the relationship between drag and the
roughness height is wellunderstood, the relationship between roughness
topography and fluid dynamic properties remains less clear. Accurately
predicting the fluid dynamic properties of a given roughness topography is
therefore nontrivial.
In this work, surface simulation methods from tribology have been
implemented in order to generate "realistic" rough surfaces with specified
topographical parameters (e.g. skewness and correlation lengths). Direct
numerical simulations (DNS) of fullydeveloped turbulent channel flow over
the generated surfaces have been performed in order to obtain their fluid
dynamic properties with the aim of establishing relationships between
topographical parameters and quantities such as the roughness function,
"forminduced" dispersive stresses and turbulenceinduced Reynolds
stresses.
Dr. Thomas Jelly received his PhD in Mechanical Engineering from Imperial
College London. He has held previous postdoctoral positions at the
University of Cambridge and at the University of Glasgow. As of March 2018,
Dr. Jelly joined Prof. Andrew Ooi's research group in order to investigate
the fluid dynamic properties of roughwall pulsatile pipe flows.
Largeeddy simulation of environmental turbulence: Langmuir cells in the ocean and aeolian morphodynamics on Mars
William Anderson
Mechanical Engineering Department, The University of Texas at Dallas, USA
3.30pm Friday 18 May 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Results from largeeddy simulation of microscale turbulence in Earth's
ocean, and in the atmosphere of Mars, are presented. The ocean mixed layer
 the first ∼ 100 m of the ocean, and the zone most closely modulated
by atmospheric forcing  regulates sequestration of anthropogenic carbon and
heat from the atmosphere, accelerates the dispersion of surfaceladen oil,
and mixes agricultural nitrogen released at coastal inlets. Largeeddy
simulation has been used to model Langmuir turbulence in coastal zones,
which is accomplished by integration of the gridfiltered CraikLeibovich
equations. The forcing required to sustain the counterrotating Langmuir
cells is prescribed via the curl of vorticity and Stokes drift  an
idealized velocity profile representing the aggregate motion due to waves.
In contrast to the open ocean, where the mechanism sustaining Langmuir cells
eventually vanishes, it is found that the presence of bottomboundary layer
shear results in distinctly different turbulence morphology. The scale of
Langmuir cells does not remain constant, and instead cells associated with
downwelling occupy the entire column; it is shown that this ostensible
"cell thickening" is a product of mechanical shear imposed by the seafloor.
This result has implications for benthic zone sequestration of surface
quantities, and for sediment erosion and suspension in coastal zones.
Results from simulation of atmospheric flow over craterlike geometries
resembling those found on Mars are shown. Mars is a dry planet with a thin
atmosphere. Aeolian processes  winddriven mobilization of sediment and
dust  are the dominant mode of landscape variability on Mars. Craters are
common topographic features on the surface of Mars, and many craters on Mars
contain a prominent central mound (NASA's Curiosity rover was landed in
Gale crater). Using densitynormalized largeeddy simulations, we have
modeled turbulent flows over craterlike topographies that feature a
central mound. Resultant datasets suggest a deflationary mechanism wherein
vortices shed from the upwind crater rim are realigned to conform to the
crater profile via stretching and tilting. This was accomplished using
threedimensional datasets (momentum and vorticity) retrieved from LES. As
a result, helical vortices occupy the inner region of the crater and,
therefore, are primarily responsible for aeolian morphodynamics in the
crater. These results suggest that secondary flows  originating from flow
separation at the crater  have played an important role in shaping
landscape features observed in craters (including the dune fields observed
on Mars, many of which are actively evolving).
Anderson received his PhD in Mechanical Engineering from The Johns Hopkins
University in July 2011. He began as a tenuretrack faculty in the
Mechanical Engineering Department at Baylor University in Fall 2011, and
moved to the University of Texas at Dallas in Fall 2014. His research
interests focus on inertialdominated turbulent flows in the environment.
His research is supported by the Army Research Office (ARO), the Air Force
Office of Scientific Research (AFOSR), the National Science Foundation
(NSF), and the Texas General Land Office (TGLO). He is a 2014 recipient of
the AFOSR Young Investigator Program award.
Applications of synchrotron light to multiphase fluid mechanics
Daniel Duke
Monash University
3.30pm Friday 11 May 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Noninvasive fluid mechanics experiments are often limited to flows that are
optically accessible. This quickly becomes problematic when multiple phases
are present, such as in sprays, cavitating flows and particleladen flows,
or under extreme temperatures and pressures. Refraction at gas/liquid
interfaces and multiplescattering from large numbers of particles, droplets
or bubbles can make quantitative optical measurements challenging. Xrays
offer a number of advantages over optical diagnostics due to the unusual
ways they interact with matter. Xrays can penetrate opaque media, but also
refract very weakly, allowing us to see through dense droplet and bubble
clouds without refractive effects. Synchrotron radiation provides a
collimated source of xrays with orders of magnitude more flux than benchtop
or CT scanner xray sources, and with tunable wavelength. Synchrotron beams
can approach micron spatial resolution and submicrosecond time resolution.
This presentation will introduce a range of synchrotron diagnostics for
fluid mechanics and example use cases. These includes radiography,
phasecontrast imaging, hard and midrange fluorescence spectroscopy, and
smallangle and ultrasmall angle xray scattering. These techniques are
expanding the range of possible environments in which fluid mechanics
experiments can be conducted. They provide an opportunity to gain new
insight into the underlying physics of multiphase flows.
Dr. Daniel Duke received his PhD in Mechanical Engineering from Monash
University in 2013, studying the aerodynamic breakup of liquid sheets.
During his PhD, Daniel spent two years in the United States on a Fulbright
Scholarship, working at the Advanced Photon Source at Argonne National
Laboratory. He joined a research group that was developing methods of using
synchrotron radiation to study the structure of highpressure diesel fuel
injection sprays. After graduation, Daniel returned to the US as a postdoc
and spent three years at the synchrotron developing novel xray measurement
techniques for cavitating flows, multijet sprays and flashevaporating
medical sprays. Daniel returned to Australia in 2017 as an ARC DECRA Fellow
in the Department of Mechanical & Aerospace Engineering at Monash. His
current work concerns the development of optical and xray diagnostics for
pharmaceutical sprays.
Stability and transition of natural convection flow in differentially heated cavities
Steve Armfield
University of Sydney
3.30pm Friday 4 May 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Natural convection flow in a differentially heated square cavity has been
widely studied, providing a canonical representation of a large range of
buoyancy driven flows. In the standard configuration one sidewall is heated,
the opposing sidewall cooled, with all other walls, ceiling and floor
adiabatic. The flow consists of natural convection boundary layers forming
on the heated/cooled walls, entraining fluid from, and discharging to, the
stratified interior. The overall flow acts to transport heat from the heated
to the cooled wall, with the details of the flow depending on the
temperature difference between the sidewalls, typically characterised by a
Rayleigh (or Grashof) number, and on the Prandtl number of the fluid.
Startup, transition and full development have been extensively investigated
showing increasingly unsteady and complex behaviour with increasing Rayleigh
number. Early results on the basic flow structure and stability properties,
together with the nature and Prandtl number dependence of the transition to
chaotic flow at full development, will be reviewed. Recent work will be
presented on the absolute stability of the flow, together with a new
threedimensional steady turning flow instability, in the context of the
tilted cavity.
Steve Armfield is Professor of Computational Fluid Dynamics in the School of
Aerospace, Mechanical and Mechatronic Engineering at the University of
Sydney. He completed his PhD, at the University of Sydney, in 1987, and has
held appointments at the University of Western Australia and the University
of New South Wales, as well as visiting positions at Stanford University,
Cambridge University, Saitama University, Tohoku University and Auckland
University. His research is focused on stability, transition and mixing in
buoyant and stratified flows.
Nonlinear Tollmien–Schlichting waves in a highspeed channel flow
Kengo Deguchi
Monash University
3.30pm Friday 20 April 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Plane Poiseuille flow has long served as the simplest testing ground for
Tollmien–Schlichting wave instability. The aim of this talk is to give
a comprehensive comparison of equilibrium Tollmien–Schlichting wave
solutions arising from new highresolution Navier–Stokes calculations
and the corresponding predictions of various largeReynoldsnumber
asymptotic theories developed in the last century, such as doubledeck
theory, viscous nonlinear critical layer theory and strongly nonlinear
critical layer theory. In the relatively small to moderate amplitude regime,
the theories excellently predict the behaviour of the numerical solutions at
Reynolds numbers of order 10^{6} and above, whilst for larger
amplitudes the computations suggest the need for further asymptotic theories
to be developed.
Kengo Deguchi is currently a lecturer in School of Mathematics at Monash
University. He obtained his PhD in 2013 at Kyoto University and then held a
research associate position at Imperial College London before moving to
Melbourne in 2016. He is interested in mathematical fluid dynamics of high
speed flows, in particular those using the method of matched asymptotic
expansions and dynamical systems theory.
Turbulent channel flow in the low polymer drag reduction regime
John Elsnab
University of Melbourne
3.30pm Friday 13 April 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Streamwise velocity profiles and their wallnormal derivatives were used to
investigate the properties of turbulent channel flow in the low polymer drag
reduction (DR) regime, DR = 6.5% to 26%. Streamwise velocity data were
obtained over a friction Reynolds number ranging from 650 to 1800 using the
single velocity component version of molecular tagging velocimetry (1cMTV).
This adaptation of the MTV technique has the ability to accurately capture
instantaneous profiles at very high spatial resolution (> 850 data points
per wallnormal profile), and thus generate wellresolved derivative
information as well. Owing to this ability, the present study is able to
build upon and extend the recent numerical simulation analysis of White
et al. (J. Fluid Mech., vol. 834, 2018, pp. 409–433)
that examined the mean dynamical structure of polymer drag reduced channel
flow at friction Reynolds numbers up to 1000. Consistently, the present mean
velocity profiles indicate that the extent of the logarithmic region
diminishes with increasing polymer concentration, while statistically
significant increases in the logarithmic profile slope begin to occur for
drag reductions less than 10%. Profiles of the streamwise velocity r.m.s.
indicate that reductions in drag correlate with the location of the maximum
moving farther from the wall and increasing in magnitude. Similarly, with
increasing drag reduction, the profile of the combined Reynolds and polymer
shear stress exhibits a decrease in its maximum value that also moves
farther from the wall. Correlations are presented that estimate the location
and value of the maximum r.m.s. streamwise velocity and combined Reynolds
and polymer shear stress. Over the range of DR investigated, these effects
consistently exhibit approximately linear trends with increasing DR. The
present measurements allow reconstruction of the mean momentum balance (MMB)
for channel flow, which provides further insights regarding the physics
described in the study by White et al. (2018). In particular, the
present findings support a physical scenario in which the selfsimilar
properties on the inertial domain identified from the leading order
structure of the MMB begin to detectably and continuously vary for drag
reductions less than 10%.
John Elsnab received his PhD from the University of Utah in 2008 and has
been a Research Fellow at the University of Melbourne since 2011.
Illuminating the mechanics of relaminarization and roughness induced transition–a vorticity perspective
Garry Brown
Princeton University
3.30pm Friday 6 April 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
There is a long history over more than a century of experiments on turbulent
shear flows. It is now more than 100 years since Taylor (1915) first drew
attention to the connection between the transport of vorticity and the
Reynolds stress. The relationship is considered in detail but in a plane,
wallbounded shear flow, such as channel flow, it is simply
(∂/∂y) <−u'v'>
= <v'ω'_{z}>
− <w'ω'_{y}>.
The long history of the 'turbulence problem' can be partly explained by the
central role of structure, or of the mechanics of the unsteady vorticity. A
simple example describes the two very different perspectives provided by a
vorticity transport and a Reynolds stress perspective. Results for free
turbulent shear flows and wallbounded turbulent shear flows, from a
vorticity transport perspective, are presented.
The flux of vorticity across a channel is constant. Near one wall the
transfer from viscous stress to Reynolds stress is inextricably linked to
the transport of vorticity and the dominant turbulent vorticity transport is
<w'ω
_{y}'>. The origin of this correlation, its role as
a counter gradient vorticity flux, the statistical behavior and the physical
explanation for its strongly asymmetrical PDF are discussed. The sources,
transport and dissipation of both ω
_{x}^{2} and
ω
_{y}^{2} are described and quantified and their
central role in the correlation, <w'ω
_{y}'>, is shown.
By contrast for the outer flow the dominant vorticity transport is
<v'ω
_{z}'> and its necessary connection, at high
Reynolds number, with <w'ω
_{y}'> raises important
'vorticity structure' questions.
These results are used to explain recent numerical results on
relaminarization and roughness induced transition. The first has been in
collaboration with ON Ramesh and his group at IISc (Bangalore) and the
second with David Goldstein and Saikishan Suryanarayanan at UT Austin.
Relaminarization in a strongly favourable pressure gradient followed by
retransition: skin friction coefficient and wall shear stress versus
distance downstream.
In important respects they seem opposite sides of the same coin. A vorticity
perspective which has been enabled by numerical simulation and the
calculation of vorticity transport in both cases sheds light on puzzling
aspects of the mechanics. It offers a perspective on the mechanics of
turbulent shear flows in general and provides a basis for a renewed
emphasis on vorticity transport, as first proposed by GI Taylor in
1915.
Garry Brown is the Emeritus Robert Porter Patterson Professor of Engineering
at Princeton University. He received a first class Honors Degree in
Engineering from the University of Adelaide in 1964, was awarded a Rhodes
scholarship, completed his D.Phil at Oxford and was then a research
fellow/senior research fellow at GALCIT, Caltech. In 1971 he returned to the
University of Adelaide and in 1978 returned to Caltech as full professor. He
was asked to serve as Director of the Australian Aeronautical Research
Laboratory and held this position from 1981–1990 after which he joined
the faculty at Princeton, serving as Chair of the Department of Mechanical
and Aerospace Engineering from 1990 to 1998.
His best known work is in the study of turbulence. Fifty years after the
inception of the Journal of Fluid Mechanics, his 1974 paper with Professor
Roshko "On density effects and large structure in turbulent mixing layers,"
was the most frequently cited paper in the history of the journal. Since
joining Princeton he has explored new research horizons while continuing
his abiding interest in turbulence.
He has also made significant contributions, as a consultant to the American
aerospace industry, that include the root cause of failure and redesign of
the solid rocket motor for the Titan IV, the cause of early failure and
development of the thrustvectoring system for AIM9X and the resolution of
critical issues for Tactical Tomahawk and for the Standard Missile3
Programs. He played a leading role in the failure investigation and redesign
of early aircooled test cells for the afterburning F100 engine.
He is a Fellow of the Institution of Engineers of Australia, Fellow of the
American Physical Society, and a Fellow of the AIAA.
Making a LIST and checking it twice: Length scales of instabilities and stratified turbulence
Colmcille P. Caulfield
BP Institute and DAMTP, University of Cambridge
3.30pm Friday 23 March 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Stratified shear flows, where the `background' velocity and density
distribution vary over some characteristic length scales, are ubiquitous in
the atmosphere and the ocean. At sufficiently high Reynolds number, such
flows are commonly believed to play a key role in the transition to
turbulence, and hence to be central to irreversible mixing of the density
field. Parameterizations of such irreversible mixing within larger scale
models of the ocean in particular is a major area of uncertainty, not least
because there is a wide range of highly scattered and apparently
inconsistent experimental and observational data. It is becoming
increasingly appreciated that appropriately defined characteristic length
scales of the flow are critically important to all stages of the flow's
evolution, and that such data scatter is associated with differing length
scales being important in different experiments and observations. Here, I
review some of the recent progress using modern mathematical techniques in
developing understanding of instability, transition, turbulence and mixing
in stratified shear flows, focussing in particular on the crucial role of
various length scales. I highlight certain nonintuitive aspects of the
subtle interplay between the ostensibly stabilizing effect of stratification
and destabilizing effect of velocity shear, especially when the density
distribution has layers, i.e. relatively deep and wellmixed regions
separated by relatively thin `interfaces' of substantially enhanced density
gradient.
Colmcille P. Caulfield is Professor of Environmental and Industrial Fluid
Dynamics at the University of Cambridge, where he is a member of both the
BP Institute and the Department of Applied Mathematics and Theoretical
Physics. Before taking up his position in Cambridge in 2005, he also held
faculty positions in Environmental Engineering at the University of
California, San Diego, and in Mathematics at the University of Bristol. His
research focuses on stability, transition, turbulence and mixing in
environmental and industrial flows, particularly where density differences
play a dynamically significant role. He is an associate editor of the
Journal of Fluid Mechanics (Rapids).
Turbulent–laminar patterns
Laurette Tuckerman
CNRS/ESPCI Paris 
Website
3.30pm Friday 16 March 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The transition to turbulence is characterized by coexistence of laminar and
turbulent regions. In plane Couette and Poiseuille flow, this coexistence
takes the form of statistically stationary alternating oblique bands of
turbulent and laminar flow whose wavelength and orientation with respect to
the streamwise direction are fixed. Since the wavelength of these
astonishing patterns is much larger than the gap, they were first discovered
in very large aspect ratio experiments. We study these patterns via full
direct numerical simulation and reduced models. This is joint work with Mat
Chantry and Dwight Barkley.
Laurette Tuckerman is a senior researcher at the CNRS (Centre National de
la Recherche Scientifique) at the ESPCI (Ecole Superieure de Physique et de
Chimie Industrielles) in France. Prior to moving to France, she was on the
mathematics faculty of the University of Texas at Austin and she obtained
her bachelors and PhD from Princeton and MIT, respectively. She studies
hydrodynamic instabilities using the methods of computational fluid dynamics
and of bifurcation theory. She has studied spherical, plane, and
Taylor–Couette flow; Rayleigh–Bénard, Marangoni, and
binary fluid convection; and the Eckhaus and Faraday instabilities. She is a
Fellow of the American Physical Society and of Euromech.
Feedback mechanisms in highspeed jet resonance
Daniel EdgingtonMitchell
Monash University
3.30pm Friday 9 March 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Highspeed jets show a proclivity for selfexcitation across a range of
operating conditions. This resonant behaviour is the result of a number of
complex fluid mechanic and aeroacoustic phenomena. The feedback cycle can
typically be broken into four discrete components:
1) A receptivity process in the nearnozzle shear layer, where an upstream
propagating wave produces a perturbation.
2) The unstable growth of this perturbation into a downstreampropagating
hydrodynamic wave.
3) Some downstream interaction of this hydrodynamic wave with shocks or
solid objects that produces an upstreampropagating wave.
4) The upstream propagation of this wave to the nearnozzle region.
This talk will consider current developments in understanding of these four
components of resonance mechanisms in shockcontaining supersonic jets: free
jets, multijets and impinging jets. Recent developments in understanding of
the downstream wavemaker, and the upstreampropagating wave will be
discussed, understanding that has been achieved through a combination of
experimental measurement and the application of stability theory.
Dr Daniel EdgingtonMitchell is a Senior Lecturer in Monash University's
Department of Mechanical and Aerospace Engineering, where he works in the
Laboratory for Turbulence Research in Aerospace and Combustion. His research
focus is the study of compressible and multiphase fluid mechanics using a
primarily experimental approach. He maintains a website with some pretty
pictures of fluid flow at
daniel.edgingtonmitchell.com.
Advanced numerical methods for fluidstructure interactions and their applications
Fangbao Tian
University of New South Wales Canberra
3.30pm Friday 2 March 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
This talk will introduce three versions of immersed boundary methods for a
variety of fluidstructure interaction (FSI) problems in biological flows,
energy harvester and hypersonic flows. The fundamental idea of the immersed
boundary method is to apply a source term into governing equations, which
are discretised on Cartesian mesh, to approximately achieve the boundary
conditions. Recently, immersed boundary method has been incorporated into
the secondorder finite difference method (for incompressible FSI),
highorder WENO scheme (for compressible FSI) and lattice Boltzmann method
(for incompressible moderate and high Reynolds number FSI). New elements
including adaptive mesh, multiphase flows and nonNewtonian rheology have
been considered. Validations are presented to show the accuracy and
efficiency of these methods. Applications of the methods are briefly
introduced.
Dr Fangbao Tian is a Senior Lecturer in the School of Engineering and
Information Technology of UNSW, Canberra. His research focuses on numerical
methods for fluidstructure interaction and complex flows, as well as their
applications. He was awarded a PhD in Engineering Mechanics in June 2011 by
the University of Science and Technology of China. In September 2011, he
joined the Computational Flow Physics Laboratory at Vanderbilt University,
USA, as a Postdoctoral Researcher. In August 2013, he moved to SEIT as a
Research Associate and got a Lecturer position here in 2014. He was
promoted to Senior Lecturer in 2017.
What does a JFM Editor look for when assessing a paper?
Ivan Marusic
University of Melbourne
3.30pm Friday 23 February 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Completion: Experimental factors influencing the quality of PIV results
Kristian Grayson
University of Melbourne
4pm Wednesday 14 February 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Experimental error sources have the potential to generate the bulk of
errors encountered in a PIV experiment. Therefore, thorough consideration
and analysis of these error causes, and informed modifications to the
experimental setup can yield significant improvements to the quality of a
measurement. This talk will cover a series of important, practical
considerations to the setup of PIV experiments (as well as other
laserbased flow visualisation techniques), which can greatly enhance the
performance and accuracy of results. The matching and alignment of laser
light sheets is one (often underappreciated) factor which can be crucial to
achieving high quality PIV measurements. Additionally, an awareness of a
laser's stability and transient warm up characteristics is also beneficial
when performing laser experiments. The emphasis of this presentation will
be on the practical actions an experimentalist can take to avoid these
issues.
On the fundamentals of Rayleigh–Taylor instability and interfacial Rayleigh–Taylor mixing
Snezhana I. Abarzhi
University of Western Australia
3.30pm Friday 9 February 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Rayleigh–Taylor instability (RTI) develops when fluids of different
densities are accelerated against their density gradient. Extensive
interfacial mixing of the fluids ensues with time. The Rayleigh–Taylor
(RT) mixing controls a broad range of processes in nature and technology.
Examples include inertial confinement fusion, corecollapse supernova,
stellar and planetary convection, reactive and supercritical fluids, fossil
fuel recovery, and nanoelectronics. In this work, we focus on the classical
problem RT mixing induced by variable acceleration with power law time
dependence. By applying group theory, we find symmetries, invariants,
scaling, correlations and spectra of the RT mixing, and quantify its
sensitivity to the initial conditions. In a broad range of the acceleration
parameters, critical points are identified at which the RT dynamics is
ballistics, quasiKolmogorov, steady flex, diffusive, and dissipative. For
superballistics and superKolmogorov dynamics, RT mixing has greater degree
of order when compared to canonical turbulence. For upsteadyflex and
superdiffusion—larger velocity fluctuations occur at larger scales,
whereas for subdiffusion and dissipation—larger velocities correspond
to smaller scales. The properties of RT mixing depart substantially from
those of canonical turbulence thus opening new perspectives for better
understanding and control of RT dynamics in nature and technology.
Snezhana Abarzhi works at the University of Western Australia as Professor
and Chair of Applied Mathematics. Her research interests are in Applied
Mathematics (applied analysis, partial differential equations, dynamical
systems) and in Theoretical Applied and Physics (plasmas, fluids,
materials). The focus of Dr. Abarzhi's research is on Rayleigh–Taylor
instabilities and interfacial mixing. Her contribution to this field is in
rigorous physicsbased theory for fundamentals of unstable interfacial
dynamics.
Direct numerical simulation of internal compressible flows at high Reynolds number
Davide Modesti
University of Melbourne
3.30pm Friday 2 February 2018
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Instantaneous flow field for square duct flow at friction Reynolds number
Re
_{τ} = 1000. Streamwise velocity contours in the crossstream
(yz) and wallparallel (at y
^{+} = z
^{+} = 15) planes are
shown. The mean crossflow structure is also visualized using streamfunction
isolines.
The talk will focus on the results of a recently developed DNS database
which includes plane channel, pipe and duct flow, across a wide range of
Mach (M
_{b} = 0.2–3), and Reynolds numbers
(Re
_{τ} = 180–1000) (Modesti & Pirozzoli,
J. Sci. Comput., 2017; Modesti & Pirozzoli, Int. J. Heat Fluid Flow,
2016). The effect of compressibility on the
mean flow statistics will be discussed for plane channel and pipe flow,
focusing on transformations which allow to map the compressible flow
statistics onto the incompressible ones. The talk will also address some
recent findings on the role of secondary motions in square duct flow and
their effect on the mean velocity field (Pirozzoli, Modesti, Orlandi &
Grasso, J. Fluid Mech., 2018). Despite their effect of
redistributing the wall shear stress along the duct perimeter, we find that
secondary motions do not have large influence on the mean velocity field,
which can be characterized with good accuracy as that resulting from the
concurrent effect of four independent flat walls, each controlling a quarter
of the flow domain. Further insight on the role of these motions is gained
by performing numerical experiments in which secondary flows are
artificially suppressed, revealing that they act as a sort of
selfregulating mechanism of turbulence which acts to mitigate the effect of
the corners.
Davide Modesti is postdoc at the University of Melbourne. He earned a PhD in
Theoretical and Applied Mechanics from La Sapienza Università di
Roma in 2017, where he carried out direct numerical simulations (DNS) of
compressible wallbounded flows at high Reynolds number. After completing
his PhD he has been postdoc at DynFluid laboratory (ENSAMCNAM) in Paris,
where he studied secondary motions in rectangular duct flow using DNS. Since
January 2018 he joined the Fluid Mechanics Research Group at the University
of Melbourne.
Thermoacoustic oscillations in annular combustors: symmetry, eigenstructure, perturbation methods, and nonlinear phenomena
Jonas Moeck
Technical University of Berlin and Norwegian University of Science and Technology
3.30pm Tuesday 19 December 2017
Old Metallurgy Masters Seminar Room 1 (Room 103, Bldg 166)
Thermoacoustic instabilities frequently appear in various combustion systems
in the form of highamplitude pressure oscillations. This undesirable
dynamic phenomenon originates from the interaction of flame oscillations and
the acoustic modes of the combustion chamber. It has been particularly
plaguing for the development of highefficiency, lowemission gas turbine
technology. After a brief introduction to the topic, I will discuss some
aspects that are specific to annular combustion chambers, as they are found
in aeroengines and in most gas turbines for power generation. These
combustors exhibit special dynamical features associated with their
discrete rotational symmetry. After introducing the key aspects of the
linear eigenstructure of this type of system, I will present some recent
tools for stability assessment, uncertainty quantification, optimization,
and nonlinear analysis of annular thermoacoustic systems.
Jonas Moeck is an Associate Professor at the Technical University Berlin and
the Norwegian University of Science and Technology. He received engineering
degrees from the University of Michigan and the Technical University Berlin,
a PhD from the latter institution and was a postdoctoral scholar at
Laboratoire EM2C, Ecole Centrale Paris. His research interests include flame
dynamics, combustion control, loworder modeling and stability analysis,
pulsed detonation, and plasmaassisted combustion.
Color of turbulence
Mihailo Jovanovic
University of Southern California
3.30pm Monday 18 December 2017
Old Metallurgy Masters Seminar Room 1 (Room 103, Bldg 166)
This talk describes how to account for secondorder statistics of turbulent
flows using lowcomplexity stochastic dynamical models based on the
linearized NavierStokes (NS) equations. The complexity is quantified by the
number of degrees of freedom in the linearized evolution model that are
directly influenced by stochastic excitation sources. For the case where
only a subset of correlations are known, we develop a framework to complete
unavailable secondorder statistics in a way that is consistent with
linearization around turbulent mean velocity. In general, whiteintime
stochastic forcing is not sufficient to explain turbulent flow statistics.
We develop models for coloredintime forcing using a maximum entropy
formulation together with a regularization that serves as a proxy for rank
minimization. We show that coloredintime excitation of the NS equations
can also be interpreted as a lowrank modification to the generator of the
linearized dynamics. Our method provides a datadriven refinement of models
that originate from first principles and it captures complex dynamics of
turbulent flows in a way that is tractable for analysis, optimization, and
control design.
Mihailo Jovanovic
(
http://ee.usc.edu/mihailo/) is a
professor in the Ming Hsieh Department of Electrical Engineering and the
founding director of the Center for Systems and Control at the University of
Southern California. He was a faculty in the Department of Electrical and
Computer Engineering at the University of Minnesota, Minneapolis, from
December 2004 until January 2017, and has held visiting positions with
Stanford University and the Institute for Mathematics and its Applications.
His current research focuses on the design of controller architectures,
dynamics and control of fluid flows, and fundamental limitations in the
control of large networks of dynamical systems. He serves as the Chair of
the APS External Affairs Committee, an Associate Editor of the SIAM Journal
on Control and Optimization and of the IEEE Transactions on Control of
Network Systems, and had served as an Associate Editor of the IEEE Control
Systems Society Conference Editorial Board from July 2006 until December
2010. Prof. Jovanovic is a fellow of APS and a senior member of IEEE. He
received a CAREER Award from the National Science Foundation in 2007, the
George S. Axelby Outstanding Paper Award from the IEEE Control Systems
Society in 2013, and the Distinguished Alumni Award from UC Santa Barbara
in 2014.
Identification, decomposition and analysis of dynamic largescale structures in turbulent Rayleigh–Bénard Convection
Yulia Peet
Arizona State University
11.30am Friday 15 December 2017
Old Metallurgy Masters Seminar Room 1 (Room 103, Bldg 166)
At high Rayleigh numbers in moderate aspectratio cylindrical domains
turbulent Rayleigh–Bénard convection (RBC) exhibits coherent
largescale motions that organize themselves into a collection of
threedimensional "roll cells". In the current talk, we present the
results and analysis of Direct Numerical Simulation of the RBC in a
cylindrical domain with a 6.3 aspect ratio and the Rayleigh number of
9.6×10^{7}. The analysis of the longtime data series that are
collected for the duration of over 100 eddy turnovers shows that the spatial
organization of the roll cells in the investigated domain can be well
described by the azimuthal Fourier modes. A hubandspoke mode3 pattern
first emerges and dominates the flow for the first 20 eddy turnovers, which
then transitions into a mode2 pattern that persists for the remainder of
the simulations. A spatial inhomogeneity of the observed mode3 and mode2
structures is investigated. A conclusion follows that the cylindrical
geometry constraint applies a "squeezing" effect to the largescale
structures, which forces them to align with a strong azimuthal
periodicity.
Yulia Peet is an Assistant Professor of Mechanical and Aerospace Engineering
at the School for Engineering of Matter, Transport and Energy at Arizona
State University since Fall 2012. Her Ph.D. degree is in Aeronautics and
Astronautics from Stanford (2006), M.S. and B.S. degrees are from Moscow
Institute of Physics and Technology (1999 and 1997). Her previous
appointments include a Postdoctoral position at the University of Pierre and
Marie Curie in Paris in 2006–2008, and a dual appointment as an NSF
Fellow at Northwestern and Assistant Computational Scientist at Argonne
National Laboratory in 2009–2012. Her research interests include
computational methods and highperformance computing, fluid mechanics and
turbulence, with applications in wind energy, aerospace, and biological
fluid mechanics.
Wind farm modeling and control for power grid support
Dennice Gayme
Johns Hopkins University
3.30pm Monday 11 December 2017
Old Metallurgy Masters Seminar Room 1 (Room 103, Bldg 166)
Traditional wind farm modeling and control strategies have focused on layout
design and maximizing wind power output. However, transitioning into the
role of a major power system supplier necessitates new models and control
designs that enable wind farms to provide the grid services that are often
required of conventional generators. This talk introduces a modelbased wind
farm control approach for tracking a timevarying power signal such as a
frequency regulation command. The underlying timevarying wake model extends
commonly used static models to account for wake advection and lateral wake
interactions. We perform numerical studies of the controlled wind farm using
a large eddy simulation (LES) with actuator disks as a wind farm model. Our
results show that embedding this type of dynamic wake model within a
modelbased receding horizon control framework leads to a controlled wind
farm that qualifies to participate in markets for correcting shortterm
imbalances in active power generation and load on the power grid (frequency
regulation). We also demonstrate that explicitly accounting for the
aerodynamic interactions between turbines within the proposed control
strategy yields large increases in efficiency over prevailing approaches by
achieving commensurate upregulation with smaller derates (reductions in
wind farm power set points). This potential for derate reduction has
important economic implications because smaller derates directly correspond
to reductions in the loss of bulk power revenue associated with
participating in regulation markets.
Dennice F. Gayme is an Assistant Professor and the Carol Croft Linde Faculty
Scholar in Mechanical Engineering at the Johns Hopkins University. She
earned her B. Eng. & Society from McMaster University in 1997 and an
M.S. from the University of California at Berkeley in 1998, both in
Mechanical Engineering. She received her Ph.D. in Control and Dynamical
Systems in 2010 from the California Institute of Technology, where she was
a recipient of the P.E.O. scholar award in 2007 and the James Irvine
Foundation Graduate Fellowship in 2003. Her research interests are in
modeling, analysis and control for spatially distributed and largescale
networked systems in applications such as wallbounded turbulent flows,
wind farms, power grids and vehicular networks. She was a recipient of the
JHU Catalyst Award in 2015, a 2017 ONR Young Investigator award, and an NSF
CAREER award in 2017.
Modelling the infrared signatures of aircraft and missiles: current and future practice
Nigel Smith
Defence Science Technology Group
3.30pm Friday 8 December 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The appropriate application of fluid mechanics modelling is essential to
successfully predicting the infrared signatures of aircraft and missiles.
It is, however, but one element of a larger framework of necessary models.
This talk will provide a qualitative understanding of the key phenomena
associated with the IR signatures of airborne systems, the physical
processes to be modelled and practical issues arising. The roadmap for
future development will be outlined.
Nigel Smith completed a PhD in Mechanical Engineering in 1994 at the
University of Sydney. The topic of this PhD and subsequent postdoctoral
fellowship at Stanford University and the NASA Ames Research Center was the
numerical modelling of turbulent combustion. He joined DST Group in 1996,
and has since worked on combustion, rocket and airbreathing propulsion, and
infrared signatures. From 2009 he has led the Infrared Signatures and
Aerothermodynamics Group (IRSA) in Aerospace Division. IRSA is an integrated
team responsible for measuring, modelling and managing the signatures of
aircraft and other systems for Defence.
Advanced understanding of turbulent combustion processes
Assaad Masri
University of Sydney
12pm Friday 17 November 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
This seminar is jointly organised with the Thermodynamics Research Group. For more information, see:
Thermodynamics seminars.
Local transport of passive scalar released from a point source in a turbulent boundary layer
Kapil Chauhan
University of Sydney
3.30pm Friday 10 November 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Simultaneous measurements of velocity and concentration fluctuations for a
horizontal plume released at eight different locations within a turbulent
boundary layer (TBL) will be discussed. Statistics based on
crosscorrelation of velocity and concentration reveal the organisation of
flow structures and the meandering plume. The timeaveraged streamwise
concentration flux is found to be positive and negative respectively, below
and above the plume centreline. This behaviour is a result of wallnormal
velocity fluctuations and Reynolds shear stress that play a dominant role in
the vertical spread of scalar plume. Results of crosscorrelation
coefficient show that high and lowmomentum regions have a distinctive role
in the transport of passive scalar. Above the plume centreline, lowspeed
structures have a lead over the meandering plume, while highmomentum
regions are seen to lag behind the plume below its centreline. Based on
these observations, a physical model is proposed for the relative
arrangement of a passive scalar plume with respect to largescale structures
in the flow.
Dr. Kapil Chauhan is a lecturer in the School of Civil Engineering at The
University of Sydney where he undertakes research within the Centre forWind,
Waves, and Water and industrylinked projects in the Boundary Layer Wind
Tunnel. Dr. Chauhan's research examines how fluids such as water and air
flow over various surfaces under different conditions. In the BLWT, he has
utilized his expertise in turbulent boundary layers and experimental methods
to offer unique measurement capabilities for wind engineering applications.
His research interests include wind energy, entrainment in boundary layers,
scalar transport and natural convection. Dr. Chauhan graduated with a PhD
from Illinois Institute of Technology, Chicago in 2007 and was a
postdoctoral research fellow at University of Melbourne from 2009 to
2014.
The fluid mechanics of microbial communities
Douglas Brumley
School of Mathematics and Statistics, University of Melbourne 
Website
3.30pm Friday 3 November 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Fluid mechanics at the microscale governs a myriad of physical, chemical and
biological processes. In this talk I will discuss several examples in which
the ability to deconstruct complex biological systems and confine, control
and visualise them, has enabled the development of new mathematical
frameworks, from the active search strategies of marine bacteria to the
dynamics of invading pathogens in the intestine. In each case, I will
highlight how access to modern experimental results can uniquely inform the
development of models with farreaching ecological insights.
Douglas Brumley is a Lecturer in Applied Mathematics at The University of
Melbourne. Before his current position, he was a Postdoctoral Researcher and
Fellow of the Human Frontier Science Program, working with Professor Roman
Stocker at MIT and ETH Zurich. He completed his PhD in the Department of
Applied Mathematics and Theoretical Physics (DAMTP) at The University of
Cambridge, under the supervision of Professor Timothy Pedley, FRS. During
this time, Douglas was a Gates Cambridge Scholar and External Research
Scholar at Trinity College. Douglas' research integrates experimental
approaches and mathematical models to investigate microscale fluid flows in
biology.
Completion: Drag reduction via manipulation of largescale coherent structures in a high Reynoldsnumber turbulent boundary layer
Reza Abbassi
University of Melbourne
3.30pm Friday 27 October 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The largescale coherent structures in the outer region of a
highReynoldsnumber turbulent boundary layer have been shown to be highly
energetic with an influence that extends down to the wall and thus affecting
skin friction. These structures possess bilateral characteristics; their
instantaneous streamwise velocity are either higher or lower than the mean
streamwise velocity at each wallnormal height, with these high and
lowspeed regions accompanied by respective down and upward wallnormal
velocity components. In a conditional sense, counterrotating roll modes are
manifested in the spanwisewallnormal planes.
In this talk, results of a realtime drag reduction strategy will be
presented where actuation involves using wallnormal jets. For an actuation
strategy where the jets are synchronized with the highspeed regions results
in a reduction of the energy associated with the largescale structures in
the outer region (∼30% reduction of largescale spectral energy was
observed in the logregion). Additionally, a maximum mean wallshear stress
reduction of 3.2% was measured at 1.6 boundary layer thicknesses downstream
of the actuators. Additional measurements involving random firing of the
jets, and synchronisation with lowspeed events show that the
abovementioned results are not a byproduct of the injection of the
wallnormal jet airflow into the turbulent boundary layer, rather it is due
to the implicit synchronization with the downwash sections of the
counterrotating roll modes which accompany the highspeed regions and led
to an opposition mechanism of the control scheme.
Flow external to a rotating torus (or a sphere)
Sophie Calabretto
Macquarie University
3.30pm Thursday 26 October 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The unsteady flow generated due to the impulsive motion of a torus or sphere
is a paradigm for the study of many temporally developing boundary layers.
The boundary layer is known to exhibit a finitetime singularity at the
equator. We present results of a study that focuses upon the behaviour of
the flow after the onset of this singularity. Our computational results
demonstrate that the singularity in the boundary layer manifests as the
ejection of a radial jet. This radial jet is preceded by a toroidal starting
vortex pair, which detaches and propagates away from the sphere. The radial
jet subsequently develops an absolute instability, which propagates upstream
towards the sphere surface.
Sophie Calabretto is a Lecturer in Applied Mathematics at Macquarie
University. Her research in fluid dynamics seeks to understand and predict
the behaviour of rotating fluids, exploring fundamental questions in fluid
physics, with the potential to impact fields as diverse as aerodynamics and
climate science.
Nonlinear internal tide dynamics and diapycnal mixing on continental shelves
Nicole Jones
University of Western Australia
3.30pm Friday 20 October 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The coastal shelf in Northwest Australia is a region of strong nonlinear
internal wave generation and dissipation that results from strong tidal
flows. Here we focus on a combination of moored and shipbased observations
collected in 100 m of water 4–22 April 2012. The moored
instrumentation observed both mean vertical temperature and velocity
structure as well as turbulence quantities. The nonlinear internal wave
(NLIW) packets were characterised by isotherm displacements of up to 60 m,
occurred once per semidiurnal tidal cycle and generally persisted for 4 h,
with periods ranging from 10–30 minutes. The NLIWs were not
consistently phaselocked to either the surface tide or internal tide. The
largest turbulent overturns observed coincided with the downward isotherm
propagation phase of each of the NLIWs within a packet. The observed
diffusivity spanned six orders of magnitude and the median value was over
four orders of magnitude greater than molecular diffusion. The highest
values of diapycnal diffusivity were event driven, for example, during the
occurrence of nonlinear internal wave packets when the stratification
weakened due to straining of the background density gradient and there were
comparatively large turbulent overturns. The diffusivity was often larger at
the midwater column compared with the nearbed, due to isopycnal straining
and shear. Our direct estimates of diffusivity demonstrate that using the
Osborn model with a constant mixing efficiency can both vastly overpredict
and underpredict the diffusivity. Our diffusivity estimates can be used to
improve predictions of processes such as the transport of nutrients,
sediment and pollutants.
Dr Jones graduated from Stanford University with a PhD in Civil and
Environmental Engineering in 2007. She is currently a Senior Lecturer at the
University of Western Australia. Dr Jones' research focus is environmental
and geophysical fluid dynamics, in particular the interaction between the
physics and biogeochemistry in natural aquatic environments. She uses a
combination of field observations and numerical modelling to study topics
such as: The elucidation of internal wave generation, propagation and
dissipation; The role of complex topography in circulation and mixing in a
macrotidal environment; Ocean mixing; The role of nonlinear internal waves
in stimulating primary productivity; The ocean response to tropical cyclone
forcing; The influence of whitecapping waves on the vertical structure of
turbulence in shallow water environments; The hydrodynamic control of
phytoplankton loss to the benthos in estuarine environments; Plume
dispersion on fringing coral reefs; The development of field techniques for
studying environmental fluid mechanics.
Some applications of the resolvent analysis
Paco Gómez
RMIT University
3.30pm Friday 13 October 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
In the first part of the talk, I will present a reducedorder model for
unsteady flows arising from the resolvent analysis of McKeon & Sharma
(J. Fluid Mech., 2010). The inputs required for the model are the mean flow
field and a small set of velocity timeseries data obtained at isolated
measurement points, which are used to fix relevant frequencies, amplitudes
and phases of a limited number of resolvent modes that, together with the
mean flow, constitute the reducedorder model. Some applications of the
model include the identification of relevant flow structures, the
reconstruction of dynamics and the estimation of unsteady aerodynamic
forces. The technique will be applied to derive a model for three different
flows: (i) an unsteady threedimensional flow in a liddriven cavity,
(ii) an oscillatory flow past a square cylinder and (iii) a turbulent pipe
flow.
The second part will explore how to control selfsustained oscillations
using a datadriven decomposition based on the resolvent analysis. The
decomposition consists of a temporal correlation between POD modes of
fluctuating velocity and nonlinear forcing, and its physical interpretation
is the simultaneous identification of the most energetic selfsustained
motions in the flow and the corresponding forcing that excite them.
Applications to flow control strategies in which a suppression of the
forcing inhibits the vortex shedding past 2D and 3D bluff bodies will be
shown.
Francisco (Paco) Gómez is a Lecturer in Computational Aerodynamics at
RMIT University. He obtained a PhD in Aerospace Engineering from the
Technical University of Madrid and he was a Postdoctoral Research Fellow at
Monash University. His research interests include flow instability, flow
control and reducedorder modelling.
Secondary eyewall formation in tropical cyclones
Jeff Kepert
Head, High Impact Weather Research, Bureau of Meteorology
3.30pm Friday 6 October 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Roughly half of all intense tropical cyclones experience an eyewall
replacement cycle. In these events, a new eyewall forms concentrically
around the original one. This secondary eyewall develops its own wind
maximum, and both the secondary eye and its wind maximum typically intensify
and contract, whilst the original eyewall and wind maximum weaken and
eventually dissipate. Although the evolution of a storm with concentric
eyewalls is reasonably well understood, the mechanism or mechanisms by which
the outer eyewall forms remain elusive. Understanding secondary eyewall
formation is an important problem, for the subsequent eyewall replacement
cycle can significantly affect the intensity of the storm, and the formation
process and replacement cycle are usually associated with a major expansion
of the outer wind field. Both these factors significantly affect the
cyclone's impact.
We investigate a high resolution numerical simulation of an eyewall
replacement cycle. We show that horizontal convergence within the boundary
layer due to friction substantially influences the evolution of the
convection. We show how this convergence is sensitive to the details of the
vortex structure, best understood in terms of vorticity, and how it is quite
different to classical Ekman pumping. Using this theory, we present evidence
for a positive feedback involving convection, vorticity and frictional
convergence that governs the subsequent evolution of the system. In this
feedback, frictional convergence strengthens the eyewall clouds, stretching
of vortex tubes in the buoyant updrafts in those clouds increases the
vorticity, and the vorticity structure of the storm determines the strength
and location of the frictional updraft.
Dr Jeff Kepert leads the High Impact Weather research team at the Bureau of
Meteorology, which is responsible for improving understanding and prediction
severe weather in Australia, including tropical cyclones, fire weather,
severe thunderstorms and heatwaves. He is widely known for his tropical
cyclone research, particularly into the dynamics and characteristics of the
nearsurface flow. More recently, he has branched out into fire weather
research, including case studies of some severe fire events, contributing to
the development of a prototype ensemble fire prediction system, and work on
coupled fireatmosphere modelling. He has a strong interest in analysing and
quantifying uncertainties in weather forecasts, with the multiple aims of
making forecasts more useful by including error bars, improving our analysis
of the current atmospheric state, and better understanding atmospheric
dynamics.
Jeff completed his undergraduate studies at the University of Western
Australia and his postgraduate degrees at Monash University. Most of his
career at the Bureau of Meteorology has been spent in the research centre,
but he has also worked as a forecaster and in the training branch.
Transition modelling for RANS/URANS approaches and applications to turbomachinery flows
Roberto Pacciani
University of Florence, Italy
3.30pm Friday 15 September 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Current models for transition in turbomachinery boundary layers are
described in the framework of Reynoldsaveraged Navier–Stokes (RANS or
URANS) description of the flow. These include the
γ–Re_{θ,t} and laminarkineticenergy (LKE) based
families of models. Emphasis is put on the discussion on the way transition
mechanisms are expressed by model ingredients. Model equations are analyzed
on a consistent physical basis. The predictive quality of the models is
assessed through applications to the prediction of steady/unsteady flows in
cascades operating in low pressure turbine conditions. The strong and weak
features of each formulation are also evidenced and discussed.
After completing his graduate degree in mechanical engineering at the
University of Florence, Roberto Pacciani received his Ph.D. from the
Technical University of Bari in 1997. Since 1999, he has been a member of
the faculty of mechanical engineering at the University of Florence. He is
presently Associate Professor in the same institution. His research
interests involve the development of Computational Fluid Dynamics
methodologies with a special focus on turbomachinery design and analysis,
and particular emphasis on turbulence/transition modelling and unsteady
component interactions. Applications mainly concern the advanced aerodynamic
design of aeronautical and industrial turbomachinery.
Monte Carlo methods for oscillatory nanoscale gas flows
Daniel Rowan Ladiges
University of Melbourne
3.30pm Friday 1 September 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Gas flows generated by resonating nanoscale devices inherently occur in the
noncontinuum, low Mach number regime. As the continuum assumption
underpinning the NavierStokes equations is violated, these flows must be
modelled using an approach that accounts for the noncontinuum nature of the
gas, i.e. the Boltzmann equation. Solution of the Boltzmann equation is
difficult using standard numerical approaches–this has motivated the
development of a range of Monte Carlo methods for simulating gas flows, the
most well known of which is direct simulation Monte Carlo (DSMC).
We begin this talk with an introduction to the Boltzmann equation applied to
nanoscale flows, followed by a discussion of methods which solve this
equation using a Monte Carlo approach. We then present a frequencydomain
Monte Carlo method which may be applied to oscillatory low Mach number gas
flows. This circumvents the requirement of current Monte Carlo methods to
operate in the timedomain, providing direct access to amplitude and phase
information using a pseudosteady algorithm. This frequencydomain method is
shown to provide a significant improvement in computational speed compared
to existing timedomain Monte Carlo methods.
Daniel received his PhD in applied mathematics from the University of
Melbourne in 2016, where he is currently a postdoctoral researcher. His
areas of research include analytic and numerical methods for solving the
Boltzmann equation, particularly in the context of nanoscale gas flows.
Coherent structures and particles in turbulent boundary layers
Ellen Longmire
University of Minnesota, USA
3.30pm Friday 18 August 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
This talk will focus on our experience employing planar and volumetric
velocimetry techniques to investigate the nature of turbulent boundary
layers and the motions of finite particles within them. Fluid velocity
fields are analyzed to quantify and understand the organization of coherent
eddies as well as their relation to regions of long streamwise coherence. In
the logarithmic region, extended packets of eddies can be tracked over
significant distances. Our efforts to manipulate the packet organization and
to understand packet recovery from perturbations will be discussed. In
addition, our first results characterizing translation and rotation of
spherical particles within the boundary layer will be presented.
Ellen Longmire received an A.B. in physics (1982) from Princeton University
and M.S. (1985) and Ph.D. (1991) degrees in mechanical engineering from
Stanford University. Prior to receiving her Ph.D., she worked as an engineer
at HauniWerke Koerber & Co in Germany and at Honeywell and SAIC in the
U.S. Since 1990, she has taught and directed research in the Department of
Aerospace Engineering and Mechanics at the University of Minnesota where she
holds the rank of Professor. She uses experimentation and analysis to answer
fundamental questions in fluid dynamics that affect industrial,
environmental, and biological applications. She is a Fellow of the American
Physical Society and received the UM Distinguished Women Scholars Award
(2007), the McKnight LandGrant Professorship (1994), and the NSF National
Young Investigator Award (1994). She serves as EditorinChief of
Experiments in Fluids. She previously served as Chair of the American
Physical Society Division of Fluid Dynamics (2016), member of the U.S.
National Committee on Theoretical and Applied Mechanics (20112015) and
Associate Editor of Physics of Fluids (20082013).
Completion: Subminiature hotwire anemometry for high Reynolds number turbulent flows
Milad Samie
University of Melbourne
4pm Friday 11 August 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Despite several decades of research in wallbounded turbulence there is
still controversy over the behaviour of streamwise turbulence intensities
near the wall, especially at high Reynolds numbers. Much of it stems from
the uncertainty in measurement due to finite spatial resolution.
Conventional hotwire anemometry is limited for high Reynolds number
measurements due to limited spatial and temporal resolution issues that
cause attenuation in the streamwise turbulence intensity profile near the
wall. To address this issue we use the NSTAP (nanoscale thermal anemometry
probe) developed at Princeton University to conduct velocity measurements
in the high Reynolds number boundary layer facility at the University of
Melbourne. NSTAP is almost one order of magnitude shorter than conventional
hotwires. This enables us to acquire fullyresolved velocity measurements
of turbulent boundary layers up to a friction Reynolds number of 20,000.
Wallresolved largeeddy simulation of flow about smoothwalled and spanwise grooved cylinders
Dale Pullin
Graduate Aerospace Laboratories California Institute of Technology, USA
3.30pm Friday 4 August 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Wallresolved largeeddy simulation (LES) of flow over both smooth and
groovedwalled cylinders will be discussed. The stretchedvortex subgrid
scale model is embedded in a general fourthorder finitedifference code
discretization on a curvilinear, bodyfitting mesh. The grooved cylinder
consists of 32 equal, sinusoidal, spanwise grooves around the cylinder
circumference, each of equal height ε. The LES is first used to
investigate the effect of groove height in 0 ≤ ε/D ≤ 1/32 at
Re
_{D} = 3.9 x 10
^{3}. A second set of LES uses fixed
ε/D = 1/32 with 3.9 x 10
^{3} ≤ Re
_{D}
≤ 6 x 10
^{4}, the latter value reaching the transcritical range.
The presence of grooves substantially reduces the Re
_{D} range of
the drag crisis. Both smoothwalled and groovedwall cylinder flows exhibit
meanflow secondary separation bubbles embedded within the largescale,
separated flow region at subcritical Re
_{D}. These transform to
prior separation bubbles as Re
_{D} is increased through and beyond
the respective drag crises. For the smoothwall flow this is associated with
local transition to turbulence and a strong drag crisis. For the
groovedcylinder case the flow remains laminar but unsteady through its drag
crisis and into the early transcritical flow range.
This research is performed in collaboration with W. Cheng and R. Samtaney
(King Abdullah University of Science and Technology).
Dale Pullin is the Robert H. Goddard Professor at the Graduate
Aerospace Laboratories California Institute of Technology. His research
interests include computational and theoretical fluid mechanics, vortex
dynamics, compressible flow and shock dynamics, turbulence, and largeeddy
simulation of turbulent flows.
Confirmation: Development of algebraic Reynolds stress models for low pressure turbines using machine learning techniques
Harshal Akolekar
University of Melbourne
2pm Wednesday 2 August 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Enhancing the efficiency of the low pressure turbine (LPT) of an aircraft
engine leads to the reduction in specific fuel consumption and carbon
emissions. This enhancement can be achieved by accurately capturing two
important phenomena in the designing and modelling process, namely:
separationinduced transition and turbulent wake mixing. Direct numerical
simulations (DNS) offer the most accurate solution to this problem but are
still computationally expensive. On the other hand, some RANSbased
turbulence and transition models, six of which are used in this work to
analyse the T106A LPT profile, estimate the separation to some degree of
accuracy, but predict inaccurate wakeloss profiles. This is partly due to
the use of the Boussinesq approximation to derive stressstrain
relationships. An approach is therefore sought to improve the Boussinesq
relationship by the development of algebraic Reynolds stress models. Instead
of using a conventional analytical approach, this work uses an evolutionary
Gene Expression Programming algorithm (a machine learning approach) to
develop algebraic models based on reference DNS data sets. Preliminary
analysis has shown that the developed algebraic Reynolds stress models
improve the turbulent wakemixing and consequently wakeloss profiles.
Confirmation: Turbulent flow over surfaces with spanwise heterogeneity
Dea Wangsawijaya
University of Melbourne
3.30pm Friday 28 July 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Examples of wallbounded turbulent flows over surfaces with heterogeneous
roughness are abundant in both engineering applications and nature. A
specific case of heterogeneity is a surface with roughness variation in the
spanwise direction. Such surface generates secondary flow in the form of
roll modes along the streamwise direction. Studies regarding the behaviour
of wallturbulent flows over spanwise heterogeneous roughness found
contradictory results in terms of the sign of the roll modes and the mean
streamwise velocity component U. The latter, as shown by a recent study by
Chung, Monty & Hutchins (2017), might be affected by the ratio of spanwise
roughness wavelength to δ. In this initial study, hotwire
measurements were performed over surfaces with spanwise heterogeneous
roughness with a certain halfwavelength Λ, yielding a range of
Λ/δ from 0.32 to 6.50. It is found that as Λ/δ
becomes very large, secondary flows are restricted to the interface between
high and low shear stress region, leaving the high and low stress region
away from the interface to behave as if the surface becomes homogeneous
based on the local stress. Similarly, measurement results of the very small
Λ/δ test case show that secondary flows are confined within
the nearwall region. Away from the wall, flow over the small
Λ/δ case becomes spanwise homogeneous. As Λ/δ
≈ 1, U above the high and low shear stress region switches sign: U
is higher above high shear stress region and lower above low stress region.
Further analysis of 1D energy spectra profile shows the occurrence of a
second peak in the wake region, which might be related to an instability of
secondary flows (Kevin et al. 2017).
Completion: Boundary layer and bulk behaviour in vertical natural convection
Chong Shen Ng
University of Melbourne
3.30pm Friday 21 July 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Thermal convection is ubiquitous in nature and many engineering
applications, for example, from the scale of convection in stars and in
Earth's atmosphere, down to the scale of convectiondriven heating or
cooling of the built environment and in the computer that you are using to
read this text. In this research, we consider the buoyancy driven flow that
is sustained between two vertical walls, where the left wall is heated and
the right wall cooled. We refer to this setup as vertical natural
convection. Results from direct numerical simulations for Rayleigh numbers
10^{5}–10^{9} and Prandtl number 0.709 are found to
support a generalised applicability of the Grossmann–Lohse theory for
thermal convection, originally developed for Rayleigh–Bénard
convection. Similar to RayleighBénard convection, a pure powerlaw
relationship between the Nusselt, Rayleigh and Prandtl numbers is not the
best description for vertical natural convection and existing empirical
relationships should be recalibrated to better reflect the underlying
physics.
In this talk, we show that for the present Rayleigh number range, the mean
laminarlike boundary layers coexist with local nearwall patches that
exhibit turbulent behaviour. Thus, the Nusselt number versus Rayleigh number
scaling relation is contaminated by dynamics of the two regions. When the
walls are removed and boundary layers omitted, the new setup mimics
turbulent bulkdominated thermal convection and we show that the Nusselt
number versus Rayleigh number scaling relation instead follows the 1/2
powerlaw asymptotic scaling relation, in agreement with the theoretical
predictions of Kraichnan (Phys. Fluids, 1962, vol. 5, pp. 1374–1389)
and Grossmann and Lohse (J. Fluid Mech., 2000, vol. 407, pp. 27–56).
An extension of this result to the wallbounded setup is discussed.
Completion: Characterisation of a microfluidic hydrotrap to study the effect of straining flow on waterborne microorganisms
Farzan Akbaridoust
University of Melbourne
3.30pm Friday 30 June 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
We present a systematic study on the effect of straining flow on the harmful
filamentous cyanobacterium Anabaena circinalis using a crossslot
type microfluidic device equipped with an advanced imagebased realtime
control system and simultaneously quantified by micronresolution particle
image velocimetry (microPIV). This enables us to monitor potential
morphological damage to, and simultaneously compute the forces on, filaments
in realtime while the filaments of the cyanobacterium are exposed to high
strain rates.
Interaction of synthetic jets with turbulent boundary layers
Tim Berk
University of Southampton
3.30pm Friday 23 June 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Synthetic jets are zeronetmassflux actuators that can be used in a range
of flow control applications. For several pulsed/synthetic jet in crossflow
applications, two physical phenomena are important: 1) The variation of the
jet trajectory in the mean flow with jet and boundary layer parameters,
which will provide an indication of the penetration depth of the
pulsed/synthetic jet in to a boundary layer and 2) the losses associated
with this penetration and the various physical mechanisms that are
responsible for it. In this talk, I will present results that discuss both
the variation of trajectories with different jet and boundary layer
parameters and the mechanisms that are responsible for the losses.
The first part will focus on the mechanisms that are responsible for
momentum losses created by the interaction of a synthetic jet with a
turbulent boundary layer. Previous studies have ascribed the momentum
deficit caused by the jet to a combination of viscous blockage of the
crossflow and the upwash of lowmomentum fluid. However, these contributions
have not been quantified systematically. In order to resolve these
contributions, detailed Particle Image Velocimetry measurements were carried
out to examine the interaction between a synthetic jet and a
lowReynoldsnumber turbulent boundary layer at the University of
Southampton. Based on an analysis of the vortical structures identified in
the PIV data, the momentum deficit is attributed to the streamwise velocity
induced by these vortical structures. Using BiotSavart calculations, this
induced velocity can be determined from the vorticity field obtained from
PIV. The resulting momentum deficit is shown to account for 90% of the total
momentum deficit, indicating that the advection of vortices is the main
source of momentum deficit in these flows.
In the second part of the talk I will present results that compare the mean
flow trajectories of the jet at low Reynolds number to the data obtained in
the High Reynolds Number Boundary Layer Wind Tunnel at Melbourne.
Trajectories of the synthetic jet in the turbulent boundary layer are
measured for a range of actuation parameters in both low and high Reynolds
numbers. The important parameters influencing the trajectory are determined
from these comparisons. The Reynolds number of the boundary layer is shown
to only have a small effect on the trajectory. In fact, the critical
parameters are found to be the Strouhal number of the jet based on jet
dimensions as well as the velocity ratio of the jet (defined as a ratio
between mean jet blowing velocity and the freestream velocity). An
expression for the trajectory of the synthetic (or pulsed) jet is derived
from the data, which (in the limit) is consistent with known expressions for
the trajectory of a steady jet in a crossflow.
Tim received his BSc in Advanced Technology (2011), MSc in Mechanical
Engineering (2014) and MSc in Sustainable Energy Technology (2014) from the
University of Twente in the Netherlands. He is currently a PhD student at
the University of Southampton under supervision of Bharath
Ganapathisubramani, hoping to finish his PhD at the end of this year. For
the past two months Tim has visited the University of Melbourne, performing
experiments in the High Reynolds Number Boundary Layer Wind Tunnel.
Turbulent mixing and entrainment in density stratified riverine flows
Michael Kirkpatrick
University of Sydney
3.30pm Friday 16 June 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Maintaining the health of our river systems requires management of a limited
resource, and involves balancing the water needs of agriculture, fisheries,
urban water supplies, power generators, industry, tourism, recreational
users and the environment. As a result, many rivers are now highly regulated
and have a large proportion of their water withdrawn for human uses, leading
to flow rates significantly below their natural levels. Lowering of flow
rates can lead to serious water quality issues due to the combined effects
of longer residence times, decreased turbulent mixing and increased levels
of stabilizing density stratification due to solar heating and/or salinity.
The resulting stagnant conditions are characterized by low levels of
dissolved oxygen and the accumulation of contaminants and nutrients, which
can lead to longterm, systemic damage to riverine ecosystems. Thermal
stratification combined with low turbulence, and high radiation and nutrient
loads are also conducive to the proliferation and accumulation of toxic
cyanobacteria (bluegreen algae) and other microorganisms. Persistence of
these conditions for more than a few days has been identified as a key risk
factor for cyanobacterial outbreaks.
In this talk I will give an overview of our research on turbulent mixing and
entrainment in density stratified riverine flows. The first half of the talk
will focus on experimental and numerical studies of entrainment and mixing
processes in saline pools that form commonly in river bed depressions. The
second half of the talk will focus on recent Direct Numerical Simulation
studies of thermal stratification in turbulent open channel flow due to
radiative solar heating. I will present our recently published findings
(J. Fluid Mech., 2015) regarding the equilibrium states reached by turbulent
open channel flow with solar heating. I will then discuss our current work
in which we are investigating the primary physical processes that break down
these stratified equilibrium states, namely nocturnal surface cooling, wind
shear and river bends.
The aim of our research is to develop scaling relations that can be used in
combination with other data, such as weather forecasts, to predict the
likely occurrence of persistent stratification events. These improved
modelling capabilities will enable river managers to initiate short
timescale tactical responses such as an environmental flow release from
upstream reservoirs in response to drought or heatwave conditions in order
to maintain water quality and river health. It will also enable them to
better optimize longterm water management strategies such as the
distribution of water allocations amongst stakeholders, taking into account
predicted changes in landuse patterns and climate.
Michael Kirkpatrick graduated with a degree in Mechanical Engineering from
the University of Sydney in 1996. He then worked with the international
building engineering consultancy Ove Arup & Partners in Sydney and their
London office. Michael returned to Australia in 1998 to study for a PhD at
the University of Sydney. On completion of his PhD in 2002, he was awarded
a two year Postdoctoral Fellowship with the Center for Turbulence Research
at Stanford University and NASA Ames. In 2004 he accepted a lecturing
position in the School of Engineering at the University of Tasmania. In 2006
Michael returned to the University of Sydney where he is currently an
Associate Professor in Fluids, Energy and Environment in the School of
Aerospace, Mechanical and Mechatronic Engineering.
Generation of a classical vortex ring and its axial interaction with a cylinder
Debopam Das
Department of Aerospace Engineering, Indian Institute of Technology Kanpur
3.30pm Wednesday 14 June 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
In this talk I will discuss a novel method for generating vortex rings
that circumvents some of the drawbacks associated with existing methods.
The predominant effects that occur in previously used methods are due to
the presence of some of the other vortices such as, stopping
vortex, piston vortex, image vortex and orifice lip generated vortices in
the early stage of development. These disturbances influence the geometric,
kinematic and dynamic characteristics of a vortex ring and lead to
mismatches with classical theoretical predictions. It is shown in the
present study that the disturbance free vortex rings produced follow the
classical theory. Flow visualization and PIV experiments are carried out in
the Reynolds number (defined as ratio of circulation Γ and
kinematic viscosity ν) range, 2270 < Re_{Γ} < 6790,
to find the translational velocity, total and core circulation, core
diameter, ring diameter and bubble diameter. In reference to the earlier
studies, significant differences are noted in the variations of the vortex
ring diameter and core diameter. A model for core diameter during formation
stage is proposed. The translational velocity variation with time shows that
the secondorder accurate formula derived using Hamilton's equation by
Fraenkel (J. Fluid Mech., 1972, vol. 51, pp. 119–135) predicts it
best.
Subsequently the axial interaction of this classical vortex ring with a
thin circular cylinder has been studied. It is observed that due to the
presence of the cylinder, there is an increase in the velocity of the vortex
ring. Also, noticeable changes in the characteristic properties of vortex
ring such as core circulation, core diameter and ring diameter have been
observed. To justify these experimental observations quantitatively, an
analytical study of the interaction under inviscid assumption is performed.
The inviscid analysis does predict the increase in velocity during the
interaction, but fails to predict the values observed in experiments.
However, when the theory is used to correct the velocity change through
incorporation of the effects of axisymmetric induced boundary layer region
over the cylinder, modelled as an annular vortex sheet of varying strength,
the changes in the translational velocities of vortex rings match closely
with the experimental values.
Dr. Debopam Das is a professor of the Department of Aerospace Engineering,
IIT Kanpur, India. He obtained PhD degree from Indian Institute of Science
Bangalore. He has worked as Senior Research Scientist, Temasek Laboratory at
National University of Singapore, Postdoctoral Research fellow in Florida
State University and as an Assistant Professor, in the Department of
Mechanical Engineering, IIT, Guwahati, India. His research interest is in
flapping flight, incompressible and compressible vortex rings, instabilityo
and transition of unsteady internal flows and instability of buoyant and
nonbuoyant free shear flows. He received Excellence in Aerospace Education
award for 2015 by Aeronautical Society of India.
Flow generated by surface waves
Horst Punzmann
Research School of Physics and Engineering, Australian National University
3.30pm Friday 9 June 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Trajectories of fluid parcels on the surface have been described
analytically for progressing irrotational waves, where particles move in the
direction of wave propagation. Waves in the laboratory and in nature are
more complex due to the development of instabilities that render ideal
planar 2D propagating waves into complex 3D waves. In this talk I will
present experiments in the short wavelength gravitycapillary range that
demonstrate different surface flow phenomena. Propagating waves, driven by
a vertically oscillating plunger, can lead to a flow reversal when wave
instabilities render planer wave fronts into wave packets at high amplitude.
At smallamplitude, stable flow pattern can be achieved in stationary
(rotating) twodimensional wave fields that are produced by
phasesynchronised wave paddles. The role of surface vorticity generation
by waves will be discussed.
Dr Horst Punzmann is research engineer at the Research School of Physics and
Engineering at the Australian National University (ANU), Canberra. He
obtained his undergraduate degree in Electrical Engineering at the
University of Applied Science in Regensburg, Germany and worked in analog
integrated circuit design in the automotive industry for 5 years. After
this, he did his PhD in hightemperature plasma physics at the ANU and
studied plasma turbulence and particle transport while being facilities
manager of the Australian Plasma Fusion Research Facility for 10 years. He
switched to hydrodynamic turbulence a while ago and his current research
interest in the Physics of Fluids group is related to the interaction of
surface waves and flows.
Confirmation: Airsea interaction: laboratory study on the airside turbulence of windwave
Tunggul Bhirawa
University of Melbourne
4pm Friday 2 June 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Wind is the main driving force in ocean wave generation, however the process
of energy transfer from wind to wave is poorly understood. In order to
explain the process comprehensively, we need to study how the atmosphere
(air) and sea interacts. Airsea interaction is relevant to understanding
the coupled atmosphereocean system. The interactions involve small and
largescale transfers of momentum, heat and mass, which affect our weather
and climate. The knowledge of airsea interaction is essential for
industries related to the ocean system (ports and harbors, shipping, oil
and gas offshore platforms) and for the ocean research community as
well.
The common problem in studying this subject is to measure important
quantities (sea drag, roughness length) close to the ocean surface which
brings engineering and logistical challenges. In extreme conditions, such as
in tropical cyclones, the uncertainty is higher since predictions are often
extrapolated from lower wind speeds. This is where laboratory study is
needed to make measurements possible.
PIV measurements were conducted to investigate the airside turbulence above
wind generated waves at the Extreme AirSea Interaction (EASI) facility in
the Michell Hydrodynamics Laboratory. The objective is to study the
behaviour of sea drag coefficient and roughness length under different wind
speed and sea state conditions, which have been the most soughtafter
measurements in the study of airsea interaction (Donelan et al.
1993).
Dynamic behaviours of composite panel subjected to underwater blast: fluidstructure interaction (FSI) experiment and numerical simulation
Jonathan Tran
Department of Infrastructure Engineering, University of Melbourne
4pm Friday 26 May 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Designing lightweight highperformance materials that can sustain underwater
impulsive loadings is of great interest for marine applications. In this
study, underwater experiments are conducted and validated with a novel
finite element fluidstructure interaction to understand the deformation and
failure mechanisms of both monolithic and Eglass/Vinylester/H250 PVC
sandwich composite panels. The experimental setup simulates fluidstructure
interactions (FSI) encountered in various applications of interest. To
generate impulsive loading similar to blast, a specially designed flyer
plate impact experiment was designed and implemented. The design is based on
scaling analysis to achieve a laboratory scale apparatus that can capture
essential features in the deformation and failure of large scale naval
structures. In the FSI setup, a water chamber made of a steel tube is
incorporated into a gas gun apparatus. A scaled structure is fixed at one
end of the steel tube and a water piston seals the other end. A flyer plate
impacts the water piston and produces an exponentially decaying pressure
history in lieu of explosive detonation. The pressure induced by the flyer
plate propagates and imposes an impulse to the structure (panel specimen),
which response elicits bubble formation and water cavitation. Failure modes,
damage mechanisms and their distributions are identified and quantified for
composite monolithic and sandwich panels subjected to typical blast
loadings. The temporal evolutions of panel deflection and centre deflection
histories were obtained from shadow Moiré fringes acquired in real
time by means of high speed photography.
Dr Jonathan (Phuong) Tran received his PhD degree in Theoretical and Applied
Mechanics at the University of Illinois, Urbana Champaign (UIUC, USA, 2010)
on the development of Laserinduced compressive shockwave technique to
investigate the dynamic delamination of multilayer thin film structures.
Following his PhD, Dr Tran has been working as a postdoctoral researcher in
Mechanical Engineering department at the Northwestern University (Evanston,
IL, USA) on an ONRfunded project to investigate the performance of
composite material subjected to underwater blast loading. His current
position is a lecturer in the department of Infrastructure Engineering, the
University of Melbourne. He has been involved and contributed to number of
successful ARC Linkage and Discovery projects, CRCProject and other
defencerelated grants from Defence Materials Technology Centre (DMTC) and
CSIRO Manufacturing Flagship. His research interests include dynamic
behaviours of composite structure under extreme loadings (air/underwater
blast, ballistics impacts, wind and fire) and design optimisation of
biomimicry and lightweight composite materials. He has published 50
journal papers and a book chapter on related topics.
Natural convection in the near shore regions of lakes and reservoirs induced by the absorption of solar radiation
John Patterson
School of Civil Engineering, University of Sydney
4pm Friday 19 May 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
In the near shore region of lakes and reservoirs where the depth decreases
towards the shore, the incidence of solar radiation results in a complex
motion which provides a mechanism for natural convection heat and mass
transfer between the shore and the main water body. This has potentially
significant consequences for water quality issues and therefore management
of the resource. The flow also has wider implications for any contained
fluid heated by radiation. The mechanism operates as follows. Incident
radiation is absorbed by the water column in an exponentially decaying
manner. The absorption of the radiation in this fashion gives rise to a
stable temperature stratification in the upper regions of the water column.
However, in the shallower parts, some radiation reaches the bed, and is
reemitted as a heat flux. There are two consequences of this: first, the
volumetric rate of heating is greater in the shallow part than in the deep,
which gives rise to a horizontal temperature gradient and therefore to a
circulation up the slope and outward at the surface from the shore line; and
second, the emission of heat from the bed gives rise to a potentially
unstable temperature gradient at the bed which may cause intermittent rising
plumes. In this presentation I discuss the development of the understanding
of the key characteristics of this complex flow, including recent numerical,
scaling analysis and experimental investigations. In particular I report
some recent laboratory experiments using concurrent PIV and shadowgraph for
measurement and visualisation which demonstrate both the underlying
circulation and the presence of the rising plumes. The characteristics of
these flows are compared with earlier scaling analysis results, and the
underlying mechanism descriptions verified. Finally, linear stability
analysis provides some of the characteristics of the rising plumes.
John received his PhD in Applied Mechanics from the University of
Queensland. He moved to University of Western Australia as postdoctoral
fellow, took up an academic post in the Department Civil Engineering,
and eventually became Head of the School of Environmental Engineering. He
moved to James Cook University in Townsville in 1997, and became the
founding head of the merged School of Engineering. In 2009 he joined
the School of Civil Engineering at the University of Sydney as Professor
of Fluid Mechanics and Director of the Wind Waves and Water Centre. From
2011–2015 he was Associate Dean Research for the Faculty of
Engineering and IT at the University of Sydney.
John has served on a number of journal editorial boards, and has been a
member of ARC assessment panels, including what is now called the College
of Experts, Centre of Excellence selection panels, and the ERA Evaluation
Committee. He has held visiting research appointments in Canada, Germany,
UK, and the USA. He has published over 200 articles in the international
literature. He has generated in excess of $7M in ARC Discovery or equivalent
research grants.
John's research interests are historically in mixing and transport in
lakes and reservoirs and the implications for water quality, and more
recently, in natural convection flows, with environmental and industrial
applications. His research encompasses theoretical, experimental and
numerical investigations.
Adjointbased optimal flow control and invariant solutions in compressible 2D cavity flows
Javier Otero
University of Melbourne
4pm Friday 12 May 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The advances in the understanding of compressible flows challenge
researchers to tackle more ambitious problems that surpass human intuition.
Hence, it becomes necessary to rely on methods that give an insight into the
underlying physical mechanisms that govern these complex flows to perform
nontrivial tasks such as flow control. To this end, an adjointbased
optimal flow control framework for compressible flows has been appended to
an existing inhouse DNS code (HiPSTAR). In particular, we focus our efforts
on a 2D cavity flow at Re=5000, where we aim to reduce noise levels at the
sensor location, by either reducing the overall sound radiation or altering
the sound directivity. In addition, with minor coding effort, this framework
is extended to permit the computation of both (stable and unstable) exact
steady and periodic flow solutions in compressible flows over complex
geometries. Thus, we present the families of exact periodic and steady
solutions across Mach number, using the same 2D cavity flow setup with a
lower Reynolds number (Re=2000). These two families of flow solutions are
found to meet at the quasiincompressible flow regime, where a stability
analysis on both periodic and equilibrium solutions shows that they form a
subcritical Hopf bifurcation
Javier did his undergraduate in Aerospace Engineering at the Technical
University of Madrid (UPM), Spain (2008–2012); an MSc in
Computational Fluid Dynamics at Cranfield University, UK (2012–2013);
and PhD in development and application of an adjointbased optimal flow
control framework for compressible DNS at Southampton University, UK
(2013–2017). He is now a postdoc working with Prof Richard Sandberg.
Shock driven instabilities in twofluid plasmas
Vincent Wheatley
University of Queensland
4pm Friday 28 April 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
In inertial confinement fusion (ICF) experiments, a capsule filled with fuel
is imploded by shock waves generated by laserdriven ablation. The goal is
to ignite a fusion burn at the centre of the implosion, and have that burn
propagate through and consume the inertially confined fuel. Hydrodynamic
instabilities cause mixing between the capsule material and the fuel, which
is highly detrimental to the propagation of a fusion burn. One of the key
hydrodynamic instabilities in ICF is the RichtmyerMeshkov instability
(RMI). This occurs when a shock interacts with a perturbed density
interface, such as the interface between the capsule and the fuel. In ICF
and astrophysical applications, the RMI typically occurs in plasmas. Here,
we study the RMI in the context of the ideal twofluid, ionelectron,
continuum equations. These couple a separate set of conservation equations
for each species to the full Maxwell equations for the evolution of the
electromagnetic fields. We focus on cases with and without an imposed
magnetic fields and with Debye lengths ranging from a thousandth to a tenth
of the interface perturbation wavelength. For all cases investigated, the
behaviour of the flow is substantially different from that predicted by the
Euler or ideal magnetohydrodynamics equations. Electric fields generated by
charge separation cause interface oscillations, particularly in the
electrons, that drive a secondary highwavenumber instability. Consequently,
the density interface is substantially more unstable than predicted by the
Euler equations for all cases investigated. Selfgenerated magnetic fields
are predicted within our simulations, but their orientation is such that
they do not dampen the RMI. In ideal magnetohydrodynamics (MHD), it has been
shown that in the presence of such a seed magnetic field, the growth of the
RMI is suppressed by the transport of vorticity from the interface by MHD
shocks. Our twofluid plasma simulations reveal that while the RMI is
suppressed in the presence of the seed field, the suppression mechanism
varies depending on the plasma lengthscales. Twofluid plasma RMI
simulations also reveal that the secondary, highwavenumber, electrondriven
interface instability is not suppressed by the presence of the seed
field.
Dr Vincent Wheatley is a senior lecturer in the Centre for Hypersonics
within the School of Mechanical and Mining Engineering at the University of
Queensland. He obtained his PhD in Aeronautics from the California
Institute of Technology in 2005. He also earned an MEngSc (Mechanical) and a
BE (Mechanical and Space) from the University of Queensland (UQ). After
completing his PhD in the US, Dr Wheatley spent two years as postdoctoral
fellow at ETH Zurich. He was then a Lecturer in Aerospace Engineering at the
University of Adelaide before taking up his position at UQ in 2009.
Nonlaminar solutions for grooved Couette flow
Sabarish Vadarevu
University of Melbourne
4pm Friday 21 April 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The dynamical systems approach to turbulence has gained a lot of attention
since the turn of the century. A large set of exact, symmetrical solutions
of the NavierStokes equations have been found for canonical wallbounded
flows such as Couette, channel, and pipe flows at low Reynolds numbers
(~ 400). The defining characteristic of these solutions is the vortexstreak
structure that is known to play a crucial role in sustaining nearwall
turbulence. In statespace, some of these solutions lie in the region that
is densely visited by turbulence, while some others resemble the laminar
solution and regulate laminarturbulent transition. These solutions, along
with their connections in statespace, form a skeleton for trajectories of
turbulent flow. In addition to providing a description of turbulence
dynamics, this approach also produces an equationbased, lowrank basis for
use in flow control.
This vision of turbulence has not been extended to roughwalled flows
despite their practical significance. We have taken the first steps in this
direction by computing exact invariant solutions for plane Couette flow with
(longitudinal) grooved walls, through continuation of known solutions for
smoothwalled flows using a simple domain transformation method. We find
that the principal role of such grooves is to localize the vortexstreak
structure near the wall, as well as to reduce the bulk energy density while
increasing the dissipation rate. Similar localization of the structure is
considered to produce drag reduction (~ 10%) in ribletmounted boundary
layers. While these results are fairly primitive, especially due to the low
Reynolds numbers involved, we believe that further efforts in this direction
can help in optimizing riblet geometries for drag reduction, and provide
insight on the influence of surfaceroughness on the nearwall flow.
Sabarish Vadarevu is a research fellow in the fluids group at the University
of Melbourne. He worked on his PhD (awaiting completion) in Aerospace
Engineering at the University of Southampton, on computing exact invariant
solutions in grooved plane shear flows. Prior to that, he obtained his
Bachelors and Masters degrees from the Indian Institute of
TechnologyMadras, with his Masters thesis involving a stability analysis
of partially premixed flames in laminar mixing layers. His current research
is focused on linear modelling and control of wallbounded turbulence.
LES for loss prediction in an axial compressor cascade at offdesign incidences
Jake Leggett
University of Southampton
4pm Tuesday 11 April 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The work focuses on the prediction of loss in axial compressors. The
majority of modern design methods use cheaper more accessible models, such
as RANS, to predict flow performance. While these methods are reliable and
easier to use they do not always provide the accuracy needed. The aim of the
work presented is to improve our understanding of how models like RANS
behave under more challenging conditions. Using higher fidelity LES
simulations it is possible to assess the performance of RANS under such
conditions and aid designers by highlighting short comings and improving the
application of such tools.
Jake Leggett is a PhD candidate at the University of Southampton, studying
loss prediction in axial compressors. Having previously done a bachelors in
mechanical engineering followed by an MSc in CFD at Imperial College London.
His interests are in compressible fluid dynamics and numerical methods,
focussing on modelling behavior and the performance of numerical models in
capturing physically realistic flows.
Confirmation: Numerical investigations of hemodynamic changes in stented coronary arteries
Bo Jiang
University of Melbourne
9am Wednesday 5 April 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Incomplete stent apposition (ISA) is sometimes found in stent deployment at
complex lesions, and it is considered to be one of the causes of
poststenting complications, such as late stent thrombosis and restenosis.
The presence of ISA leads to large recirculation bubbles behind the stent
struts, which can reduce shear stress at the arterial wall that retards
neointimal formation process and thus lead to complications. Computational
fluid dynamics (CFD) simulations are performed on simplified twodimensional
axisymmetric arterial models with stents struts of square and circular
crosssectional shapes at a malapposition distance of 120 μm from the
arterial wall. Under the condition of the same flow rate, both square and
circular strut cases show that shorter period provides greater flow
deceleration, leading to the formation of a larger recirculation bubble.
With the same thickness, circular strut has a significant improvement over
the square strut in terms of the size of the recirculation bubble, and
therefore less likely to lead to complications. We also carried out
threedimensional computational fluid dynamics studies on a partially
embedded coronary stent. Stent struts are partially embedded in portion of
the circular and elliptical artery's circumference and malaposed elsewhere.
Maximum malapposition distances (MD) used in this study are 0.255 mm
(moderate) and 0.555 mm (severe). Timeaveraged wall shear stress (TAWSS) is
used as the haemodynamic metric to evaluate the clinical significance of
ISA. TAWSS decreases along the circumferential direction as MD decreases
from the maximum ISA side to the embedded side. The case with severe ISA
has a larger area of high TAWSS on the arterial wall at the proximal end and
low TAWSS at the distal end of the stent.
Theoretical framework for the upscaling of physical interactions in aquatic mobileboundary flows
Konstantinos Papadopoulos
University of Melbourne, University of Aberdeen
4pm Tuesday 28 March 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Most environmental flows often exhibit high levels of spatial and temporal
heterogeneity in hydrodynamic fields due to the effects of multiscale
roughness elements and their mobility. These effects are especially profound
in the nearbed region. The development of a unifying framework for the
integration and upscaling of the fluid mechanical, ecological and
biomechanical processes occurring in such conditions is needed. Particular
focus in this study is on the interactions of the fluid motion with the
motions of aquatic plants and sediments in aquatic systems.
To cope with the temporal and spatial heterogeneity of the flow field near
the flow interface with a second nonfluid phase, the governing equations of
motion are averaged over time and space. To deal with the possible
discontinuity of the averaged fields within the averaging domains,
appropriate definitions and theorems for time and space averaging are
used.
Appropriately formulated coupled doubleaveraged conservation equations are
developed for fluid, sediment, and plant motions. Complementary equations
for the secondorder velocity moments introduced by the averaging process
are also proposed. Due to the doubleaveraging methodology (i) the governing
equations are upscaled to the scales relevant to applications, (ii) the
fluid motion is rigorously coupled with the nonfluid (plants or sediments)
motions, and (iii) the effect of the moving interfacial boundary is
introduced explicitly in the governing averaged equations.
This presentation introduces to the main concepts and key steps involved in
the derivation of the doubleaveraged equations outlined above, discusses
their application to the analysis of highresolution data sets and
identifies potential applications in mobileboundary flow studies.
Konstantinos performed his PhD research on flowbiota and flowsediment
interactions in rivers and openchannel flows at the University of Aberdeen,
where he was on a MarieCurie Fellowship. Prior to that, he obtained
an MSc in coastal engineering at the National Technical University of
Athens (2013) and MEng in environmental engineering at the Technical
University of Crete (2009).
High resolution simulation of dissolving iceshelves in sea water
Bishakhdatta Gayen
Research School of Earth Sciences, Australian National University
4pm Friday 24 March 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Precise knowledge of ocean dynamics and interactions with the grounded ice
at high latitudes is very crucial for predicting the sealevel rise and
further development of adaptation strategies in a warming global climate.
The physics of these ocean–ice interactions particularly related to
small scale processes, is poorly understood which, along with limited
observation constraints, leads to uncertainties in the predictions of future
melt rate. We perform high resolution numerical simulation to investigate
dissolving of ice into cold and salty sea water. The three coupled interface
equations are used, along with the Boussinesq and nonhydrostatic governing
equations of motion and equation of state for seawater, to solve for
interface temperature, salinity, and melt rate. The main focus is on the
rate of dissolving of ice at ambient water temperatures between
−1°C and 2°C and salinity around 35 psu and the dependence on
stratification (as characterizes many sites around Antarctica). Our
simulation also shows boundary layer next to the ice face is dominated by
turbulent motions. It is also important to quantify the difference between
the melting of a vertical ice wall and the melting of a sloping ice shelf.
The basal slope is observed to vary significantly, due to the formation of
crevasses, channels and terraces. Our highresolution simulations are
designed for direct comparison with laboratory measurements and theory. The
temperature and density structures found under Pine Island Glacier show
several layers having a vertical scale that can also be explained by this
study.
Bishakhdatta Gayen received a degree in Bachelor of Mechanical Engineering
from Jadavpur University in Kolkata, India in 2006, and a M.S. degree in
Engineering Science, majoring in Fluid Mechanics, from the Jawaharlal Nehru
Centre for Advanced Scientific Research, Bangalore, in 2007. He was then
awarded a University of California Graduate Fellowship and received an M.S.
(2010) and Ph.D. (2012) from University of California, San Diego. He pursued
research work on "Turbulence and Internal Waves in Tidal Flow over
Topography" under the guidance of Prof. Sutanu Sarkar and was awarded the
Andreas Acrivos Award for Outstanding Dissertation in Fluid Dynamics from
the American Physical Society. He moved to Australia to pursue his
postdoctoral research with Prof. Ross W. Griffiths at the Australian
National University in Canberra. Bishakh is currently an Australian
Research Council Discovery Early Career Fellow. His current research
interests are nonlinear internal waves in the ocean, turbulent convection,
modeling of Antarctic ice melting and Southern ocean dynamics.
The vortices of V. Strouhal
David Lo Jacono
Institut de Mécanique des Fluides de Toulouse
4pm Friday 17 March 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
During this seminar, I will talk about the link between Strouhal's findings
and vortices. We learn that the Strouhal number characterises the shedding
frequency of vortices behind a bluffbody, yet Strouhal never encountered a
vortex. I will try to show the role played by various wellknown researchers
(Rayleigh, Bénard, Kármán, etc.), and others that are
less well known yet have a key role towards understanding wake dynamics.
Starting from the motivation of Strouhal and ending with the modern analysis
of wakes in 1930, I will try to build an incomplete and brief history of
19th20th century (wake) fluid mechanics focussing on motivation and
experimental insights. This work was originally part of my ScD dissertation
and further completed for the recently held colloquium "A century of Fluid
Mechanics 18701970" celebrating the IMFT century anniversary.
Skinfriction and vorticity fields in wallbounded flows and the attached eddy hypothesis
Min Chong
University of Melbourne
4pm Friday 10 March 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The invariants of the velocity gradient tensor have been used to study
turbulent flow structures in order to extract information regarding the
scales, kinematics and dynamics of these structures. These invariants cannot
be used to study structures at a noslip wall since they are all zero at the
wall. However, the flow structures at the wall can be studied in terms of
the invariants of the "noslip tensor". Employing surface flow patterns
generated using local solutions of the NavierStokes equations, the
relationship between the surface skinfriction field and vorticity field
will be explored. These local solutions, together with data from the Direct
Numerical Simulations of channel flows, pipe flows and boundary layer flows
may perhaps lead to a better model for the structure of attached eddies in
wall bounded flows.
Linear estimation of largescale structures in channel flow at Re_{τ} = 1000
Simon Illingworth
University of Melbourne
4pm Friday 3 March 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Given the timeresolved velocity field in a plane at a single wallnormal
height, how well can one estimate, using a linear model alone, the
timeresolved velocity field at other wallnormal heights? This question
will be explored for channel flow at Re_{τ} = 1000 using data
from the John Hopkins Turbulence database. Two different linear models will
be explored. Each linear model has its origins in the Navier–Stokes
equations.
Subfilterscale stress modelling for largeeddy simulations
Amirreza Rouhi
University of Melbourne
4pm Friday 24 February 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
A subfilterscale (SFS) stress model is developed for largeeddy simulations
(LES) and is tested on various benchmark problems in both wallresolved and
wallmodelled LES. The basic ingredients of the proposed model are the model
lengthscale, and the model parameter. The model lengthscale is defined as
a fraction of the integral scale of the flow, decoupled from the grid. The
portion of the resolved scales (LES resolution) appears as a userdefined
model parameter, an advantage that the user decides the LES
resolution.
The model parameter is determined based on a measure of LES resolution, the
SFS activity. The user decides a value for the SFS activity (based on the
affordable computational budget and expected accuracy), and the model
parameter is calculated dynamically. Depending on how the SFS activity is
enforced, two SFS models are proposed. In one approach the user assigns the
global (volume averaged) contribution of SFS to the transport (global
model), while in the second model (local model), SFS activity is decided
locally (locally averaged). The models are tested on isotropic turbulence,
channel flow, backwardfacing step and separating boundary layer.
In wallresolved LES, both global and local models perform quite accurately.
Due to their nearwall behaviour, they result in accurate prediction of the
flow on coarse grids. The backwardfacing step also highlights the advantage
of decoupling the model lengthscale from the mesh. Despite the sharply
refined grid near the step, the proposed SFS models yield a smooth, while
physically consistent filterwidth distribution, which minimizes errors when
grid discontinuity is present.
Finally the model application is extended to wallmodelled LES and is tested
on channel flow and separating boundary layer. Given the coarse resolution
used in wallmodelled LES, near the wall most of the eddies become SFS and
SFS activity is required to be locally increased. The results are in very
good agreement with the data for the channel. Errors in the prediction of
separation and reattachment are observed in the separated flow, that are
somewhat improved with some modifications to the walllayer
model.
Amirreza Rouhi is a postdoctoral fellow in the fluids group at the
university of Melbourne. Amirreza received his PhD in Mechanical Engineering
from Queen's University of Canada under supervision of Prof. Piomelli, doing
subfilterscale (SFS) stress modelling as his PhD thesis. His other research
interests include wallmodelled LES, spectral methods and rotating
turbulence.
Completion: The minimalspan channel for roughwall turbulent flows
Michael MacDonald
University of Melbourne
4pm Friday 10 February 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Turbulent flows over roughness are ubiquitous in engineering and geophysical
applications, however their effects are primarily given through
semiempirical models and approximations. The accuracy of these methods is
sensitive to the model and roughness topology in question, so that
laboratory experiments and conventional direct numerical simulations (DNS)
remain the desired standard in roughwall studies. However, these techniques
are expensive for both industry and researchers, making design predictions
and the examination of roughwall flows challenging. In this talk, we
outline a framework termed the minimalspan channel in which fully resolved
numerical simulations of roughwall flows can be conducted at a reduced cost
compared to conventional DNS. The minimalspan channel is used to simulate
turbulent flow over a variety of roughness geometries that would otherwise
be prohibitively expensive to study. Special attention is given to recent
simulations of rectangular bars aligned in the spanwise direction, commonly
called dtype roughness.
Completion: Reorganising turbulence using directional surface patterns
Kevin
University of Melbourne
4pm Wednesday 1 February 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
We attempt to passively reorganise wall turbulence using
transitionallyrough surface patterns in the form of herringbone riblets.
The flow fields are investigated experimentally using large fieldofview
particle image velocimetry in all orthogonal planes. The pronounced
modification of the boundary layer suggests that a preferential arrangement
of the naturallyoccurring turbulence events may have been introduced. The
spatial information captured in these multiple orientations enable us to
clearly observe distinct turbulence events, such as the unstable outer
layer, nonsymmetrical vortical motions and strong streamwiseperiodic
events. Interestingly, our recent analysis indicates that the aforementioned
events we thought was induced by the surface pattern, though weaker, are
actually present in the smoothwall (canonical) flows. In the average
picture however, these structural attributes are masked by their random
occurrences in space. This further suggests that we can passively reposition
and perhaps manipulate large turbulence structures.
DNS study on relation between vorticity and vortex
Chaoqun Liu
University of Texas at Arlington, Texas, USA
2pm Monday 23 January 2017
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Vorticity, vorticity line, vorticity tube have rigorous mathematical
definition, but the rigorous definition of vortex is still an open
question. However, for long time until now, in many research papers
and text books, vortex is defined as vorticity tube confined by
vorticity lines without vorticity line leakage. Vortex is also
considered as congregation of vorticity lines with larger vorticity.
Our DNS study shows that vortex is not a vortex tube but open for
vorticity line penetration, is not a congregation of vorticity lines
but a dispersion of vorticity lines, is not a concentration of
vorticity with larger vorticity but with smaller vorticity in most
3D cases. In general, vortex is an intuitive concept of rotation
core with weak dissipation, e.g. zero dissipation when it becomes
rigid rotation. In addition, vortex is not a vorticity tube, being
different from what suggested by many research papers and textbooks.
At the laminar boundary layer, vorticity is large but we have no
vortex. A core with 2 nearly pure rotations per second, where
vorticity is small, is a vortex, but a core with 10000 strongly
sheared rotation, where vorticity is very large but deformation is
very large as well, may not be a vortex. Therefore, vorticity
magnitude and vortex are irrelevant. Unlike solid body, vortex is
always a mixture of vorticity and deformation and vortex is really
defined as an open area (not tube) where deformation is weak and
vorticity is dominant. A function socalled "Omega" is defined to
identify the vortex and Omega=0.52 well represents the vortex area
boundary. Vortex is mathematically defined as Omega >0.5 which
means a place where vorticity overtakes deformation. The minimum
gradient of "Omega" is well representing the vortex axis. Several
examples including DNS for late flow transition and LES for shock
vortex interaction have been tested and the outcome is
promising.
Chaoqun Liu is a Distinguished Professor and CNSM Center Director
in the Department of Mathematics, University of Texas at Arlington,
Arlington, Texas, USA.
Completion: The structure and scaling of roughwall turbulent boundary layers
Dougal Squire
University of Melbourne
2pm Wednesday 21 December 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Turbulent wall layers are a pervasive and influential feature in nature and
engineering; common examples include the atmospheric and benthic layer
(relevant to weather prediction and pollutant dispersion, for example),
boundary layers developing on aerial, marine and terrestrial vehicles (such
as aeroplanes, naval vessels, cars and trains), and flows in piping
networks. These flows are characterised by high Reynolds numbers and, more
often than not, surface roughness that exerts a dynamical effect on the
flow. The latter may result from manufacturing defects, erosion and/or
deposition, including that of living organisms. In this talk, we will
present results from recent measurements of roughwall turbulent boundary
layers spanning a very wide range of friction and roughness Reynolds
numbers. The results comprise 38 datasets and four experimental techniques,
including hotwire anemometry and particle image velocimetry. Our analysis
will focus broadly on the relationship between the outer region flow and
nearwall structures which are directly influenced by the roughness
scale(s). Features of this relationship will be discussed using
singlepoint statistics, measures of spatial structure, and the innerouter
interaction model of Marusic et al. (Science, 2010, vol. 329,
pp. 193–196).
Confirmation: Entrainment and interface dynamics of turbulent plumes
Himanshu Mishra
University of Melbourne
10am Wednesday 9 November 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Turbulent plumes form when a fluid of one density is injected into
another quiescent fluid with a different density. From violent
volcanic eruptions to the smoke rising from a cigarette, turbulent
plumes are omnipresent in nature at wide range of scales. One of the
fundamental aspects in the understanding of turbulent plumes is the
process of 'entrainment', the mixing of surrounding fluid into the
plume. Unlike nonbuoyant flows, plumes pose a challenge in using
common optical measurement techniques like particle image
velocimetry (PIV) and planar laser induced fluorescence (PLIF),
because of the local changes in refractive index, when two fluids
mix. This has led to most of the previous research being focused on
global measurements of entrainment, whereas the local measurements,
which are required for clearer understanding the entrainment
phenomenon are practically nonexistent. One of the ways to
circumvent this problem is to match the refractive index of two
solutions while maintaining the density difference, by adding
certain chemicals to them. Alternatively, a measurement technique
named Background Oriented Schlieren (BOS), which uses the local
refractive index changes to quantify the local density variations,
can be used.
With the final aim of understanding the process of entrainment in
turbulent plumes, we present preliminary results for two
experimental studies. (i) Velocity measurements in a vertical round
axisymmetric turbulent jet in a newly constructed experimental
facility, and (ii) free settling sphere in a sharp density interface
using BOS.
Hydrodynamic forces on geometrically porous structures
Scott Draper
University of Western Australia
4pm Friday 28 October 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Prediction of hydrodynamic forces on geometrically porous
structures is important for many applied problems in offshore
engineering. However, the accurate prediction of these forces is
complicated by the fact that the bulk velocity of the flow passing
through a porous structure is a function of its porosity. In this
talk I will present a theoretical model built on control volume
arguments which may be used to estimate the bulk velocity of the
flow passing through an isolated porous structure and, in turn,
the resulting hydrodynamic force on the structure. Extensions of
the model will be introduced to consider multiple porous
structures in close proximity, inviscid shear flow and nonuniform
porosity. It will be shown how these extensions have been used in
recent work to optimise the layout of wind and tidal turbine
arrays, estimate forces on offshore space frame structures and
predict the flow through patches of aquatic vegetation.
Dr Scott Draper is a senior lecturer at the University of Western
Australia. His research focuses on offshore fluid mechanics
applied mostly to the oil and gas and renewable energy industries.
This has included research on the stability of subsea
infrastructure, the optimum arrangement of marine renewable energy
devices and the hydrodynamics of floating bodies. He is fortunate
to work with numerous industry partners including Shell, Woodside
and Carnegie Wave Energy.
Pulseburst PIV in highspeed flows
Steven Beresh
Aerosciences Department Sandia National Laboratories
4pm Wednesday 26 October 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Timeresolved particle image velocimetry (TRPIV) has been achieved
in a highspeed wind tunnel and a shock tube, providing velocity
field movies of compressible turbulence events. The requirements of
highspeed flows demand greater energy at faster pulse rates than
possible with the TRPIV systems developed for lowspeed flows. This
has been realized using a pulseburst laser to obtain movies at up
to 50 kHz with higher speeds possible at the cost of spatial
resolution. The constraints imposed by use of a pulseburst laser
are a limited burst duration of 10.2 ms and a low duty cycle for
data acquisition. Pulseburst PIV has been demonstrated in a
supersonic jet exhausting into a transonic crossflow and in
transonic flow over a rectangular cavity. The velocity field
sequences reveal the passage of turbulent structures and can be used
to find velocity power spectra at every point in the field,
providing spatial distributions of acoustic modes and revealing
turbulence scaling laws. Additional applications in a shock tube
show the transient onset of a von Kármán vortex street
shed from a cylinder and particle drag in a shocked dense gassolid
flow. The present work represents the first use of TRPIV in a
highspeed ground test facility.
Steven J. Beresh is a Distinguished Member of the Technical Staff at
Sandia National Laboratories in Albuquerque, New Mexico, U.S.A.,
where he has worked since 1999 and currently leads the Experimental
Aerosciences Facility. He received his B.S. in Mechanical
Engineering from Michigan State University in 1994 and his Ph.D. in
Aerospace Engineering from The University of Texas at Austin in
1999. His research interests emphasize the use of optical
diagnostics for compressible aerodynamics, particularly particle
image velocimetry, but utilize a variety of laserbased
instrumentation techniques and highfrequency surface sensors. He
also is responsible for a wide range of wind tunnel testing and
facility operation. He is an Associate Fellow of the American
Institute for Aeronautics and Astronautics, the Chair for the AIAA
Aerodynamic Measurement Technology Technical Committee, and is a
past President of the Supersonic Tunnel Association
International.
Development effects in turbulent boundary layers: zero and adversepressuregradients
Ramis Örlü
KTH Royal Institute of Technology Sweden 
Website
4pm Friday 14 October 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
In this talk, we discuss a number of different aspects pertinent to
zero pressure gradient (ZPG) turbulent boundary layers (TBLs), and
extend these to moderate and strong adverse pressure gradients
(APGs). We start out with inflow and tripping effects in ZPG TBLs
and show their persistence in the outer layer beyond Reynolds
numbers (Re) that could be reached just few years ago by means of
direct numerical simulations (DNS). When it comes to APG TBLs, the
situation has usually been more blurry when considering literature
data, due to their dependency on the pressuregradient strength and
streamwise history, besides Reynolds number effects. Based on
different APG TBLs developing on flat plates and the suction side of
a wing, we aim at distinguishing the importance of these parameters
based on wellresolved inhouse largeeddy and direct numerical
simulations as well as wind tunnel experiments.
A recurring tool in the investigation of these topics is the
diagnosticplot concept, which indicates a linear dependence between
the turbulence intensity and its mean velocity and turns out to be
useful when establishing a wellbehaved state in the outer layer of
wallbounded turbulent flows and determining the boundary layer edge
in strong PG cases or TBLs on curved surfaces. A possible analogy
between highRe ZPG TBL flows and strong APG TBLs is also considered
in light of negative wallshear stress events.
Dr. Ramis Örlü received his M.Sc. (Dipl.Ing.) in 2003
from the Ruhr University of Bochum, Germany in Mechanical
Engineering and holds a Ph.D. in Fluid Mechanics (2009) KTH Royal
Institute of Technology, Stockholm, Sweden. His research is focused
on experimental methods and wallbounded turbulent flows. Since 2009
and 2015 he works as a researcher and docent (in Experimental Fluid
Physics), respectively, at the Linné FLOW Centre located at
KTH. His research portfolio covers the experimental investigation
of wallbounded turbulent flows with strong numerical
collaborations. Other active areas cover measurement technique
development/correction for highReynolds number wallbounded flows
as well as applications in internal combustion engine related flows
and various flow control strategies for separation delay and
skinfriction drag reduction. Dr. Örlü has about 50
journal publications, and a wide network with other researchers in
wallbounded turbulence research.
Experimental investigation of twophase flows in naval hydrodynamics
Paul Brandner
Australian Maritime College University of Tasmania
4pm Thursday 29 September 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Flow about ships and submarines vary from pure liquidgas to pure
liquidvapour twophase flows. They involve a large range of spatial
and temporal scales and physical phenomena such that gaining insight
remains a challenge via either experiment or computation. Naturally
occurring microbubble populations in the ocean are of particular
interest due to their potential to both affect and be affected by
various phenomena and flow processes. They provide nuclei for
cavitation inception on lifting surfaces of ships and submarines.
Surface ships are prolific sources of polydisperse bubble
populations that add to bubbly disperse flows about lifting
surfaces. Cavitation and turbulence ultimately create complex
longlived largescale microbubble laden wakes with properties
significantly altered compared with those of the outer fluid.
Techniques and results on various twophase flow experiments in
naval hydrodynamics are presented including microbubble generation
for artificial seeding of nuclei and for PIV, microbubble disperse
flows, cavitation inception, macroscopic cavitation phenomena,
supercavitation, millimetrebubble break and coalescence in
turbulent shear flows and fluidstructure interaction.
Paul Brandner is research leader of the Cavitation Research
Laboratory at the Australian Maritime College. His research
interests include cavitation inception and dynamics, bubbly flows,
supercavitation, fluidstructure interaction and hydroacoustics.
Completion: Numerical simulations of twophase flow: Eulerian and Lagrangian predictions
Shuang Zhu
University of Melbourne
4.15pm Friday 16 September 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The term twophase flow refers to any fluids flow of two coexisting
media in motion. The difference between the media can be its
thermodynamic state, called phase (e.g. gas, liquid or solid) and/or
its multiple chemical components. Twophase flow is common in many
environmental systems including rain, snow, sandstorms, avalanches,
sediment transport debris flow and countless other natural
phenomena. It is also of extreme importance in many industrial and
engineering applications, such as fluidised bed, droplet spray
process, drug aerosol delivery, dense gas dispersion, particle
deposition and pollution control.
A persistent theme throughout the study of twophase flow is the
need to model the detailed behaviour of these flow phenomena as the
ability to predict the behaviour of these flow systems is central to
safety, efficiency and effectiveness of those events and processes.
Similar to singlephase flow research, the development of predictive
models for the twophase flow follows along three parallel paths,
namely theoretical models, laboratory experiments and numerical
simulations. There are some cases where fullscale experimental
models and/or accurate theoretical models are possible. However, in
many other cases, the use of those models can be impossible for many
of reasons. Consequently, the predictive capability and physical
understanding of twophase flow problems heavily rely on the
employment of numerical simulations. The study of dynamics of
twophase flow using high resolution numerical simulations has
gained considerable momentum with the recent development in
computational fluid dynamics (CFD) methodologies. In particular, the
use of direct numerical simulations (DNS) resolves the entire range
of spatial and temporal scales of the fluid motion, which provides
new insights into the structure and dynamics of the twophase
flow.
Current twophase flow simulations modelling can be broadly
classified based on the treatment of the dispersed phase. Two types
of approaches are prevalent, Eulerian approach and Lagrangian
approach, which are based on the concept of the continuous phase
described in the Eulerian reference frame in a flow domain with the
dispersed phase described either in the Eulerian reference frame as
the continuous phase, leading to the Eulerian approach (commonly
known as the "twofluid" model), or in the Lagrangain frame, leading
to the Lagrangain approach (also known as the "trajectory" model).
The primary motivation behind the present work is to perform high
fidelity numerical simulations to study twophase flow using both
Eulerian and Lagrangian approaches on three different twophase flow
problems, namely gravity currents, particleladen currents and
enhanced targeted drug delivery in a vascular tree.This PhD work
provides a much needed knowledge on different twophase flow
numerical modelling approaches by solving the aforementioned real
life scenarios. Specifically, the success of this PhD work would
lead to better twophase computational fluid dynamics
strategy.
Statistical characteristics of fully nonlinear potential deep water wave fields
Elena Sanina
Department of Infrastructure Engineering, University of Melbourne
4pm Friday 12 August 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
We present an analysis of longterm wave simulations performed using
a fully nonlinear potential deep water wave model. The results of
the simulations are compared with the spectra obtained using a
variety of directional methods and are discussed in the context of
their applications. The shortcrestedness of a wave field is
investigated in terms of the threedimensional steepness defined as
the vector whose magnitude is equal to the average steepness
calculated along the vector direction in a horizontal plane. Several
statistical characteristics of the surface elevation field and the
wave spectrum development such as a nonuniformity of the wave
spectrum and a migration of its peaks are discussed. The appearance
of coherent structures on the ocean surface closely related to the
tendency of high waves to occur in groups is analysed. Various
features of the identified groups such as velocity of the groups,
their lengths, lifetime and steepness are studied. A general
analysis of the number of detected groups is also performed for the
computed wave fields.
Dr. Elena Sanina is a Research Fellow in Ocean Engineering at the
Department of Infrastructure Engineering, University of Melbourne.
With Bachelor and Master degrees in Pure Mathematics from the
Voronezh State University (Russia), she continued her studies
performing research in the area of applied mathematics. In 2015
she completed her PhD in the Centre for Ocean Engineering, Science
and Technology (COEST) at Swinburne University of Technology, then
continued her work at the University of Melbourne in May 2016. Her
research interests include nonlinear waves, extreme waves and wave
statistics.
Completion: Evolution of zero pressure gradient turbulent boundary layers
Will Lee
University of Melbourne
4pm Monday 8 August 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
An experimental investigation of evolving turbulent boundary layers in a tow
tank facility is presented. The main aim is to study the dynamics and the
development of coherent features in a turbulent boundary layer from the trip
to a highReynolds number state. With this goal in mind, timeresolved
particle image velocimetry measurements are performed with a towed plate to
provide a unique view of the streamwise evolution of turbulent boundary
layers. The merit of this temporallyresolved dataset is it enables us to
investigate the evolving dynamic properties of coherent features
specifically in the outer region of turbulent boundary layers. The results
reveal the formation mechanism and temporal evolution of shear layers and
their associated largescale coherent motions. Based on these findings, a
conceptual model which describes dynamic interactions of coherent features
is proposed and discussed.
Selfsustaining motions and periodic orbits in statistically stationary homogeneous shear turbulence
Atsushi Sekimoto
Monash University
4pm Friday 5 August 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Homogeneous shear turbulence (HST) is the most canonical flow to investigate
the shearinduced turbulence, where it is known that there are coherent
structures, like velocity streaks and streamwise elongated vortices, similar
to wallbounded flows. The coherent structures and their dynamics are
considered as incomplete realisations of nonlinear invariant solutions in
the incompressible Navier–Stokes equation, i.e. equilibrium solutions
or periodic orbits, which have been reported in the plane Couette,
Poiseuille, pipe flow, isotropic turbulence, and so on. In this study,
unstable periodic orbits (UPOs) in HST are investigated. The ideal HST grows
indefinitely, and in simulations, the growing integral scale reaches the
size of the computational domain. The largestscale motion is restricted by
the computational domain, and it grows, breakdowns, and regenerates
quasiperiodically, reminiscent to the selfsustaining motion and bursts in
wallbounded flow. The long term simulation of HST reaches the statistically
stationary state. Direct numerical simulations (DNS) of statistically
stationary homogeneous shear turbulence (SSHST) are performed by a newly
developed code. The box dependency is investigated to establish 'healthy'
turbulence in the sense that the turbulence statistics are comparable to
wallbounded flow. SSHST is essentially a minimal flow, and constrained by
the spanwise box dimension as in minimal channel flow (Sekimoto, Dong &
Jiménez, 2016 Phys. Fluids 28:035101; Flores &
Jiménez 2010 Phys. Fluids 22:071704). In these good boxes,
UPOs are numerically obtained. It represents a regeneration cycle of
streamwise vortices and a streak, similar to the selfsustaining process
(SSP) in wallbounded flow.
The speaker received a PhD in thermofluid mechanics from Osaka University
in 2011. He joined the Fluid Mechanics group in the Technical University of
Madrid (UPM) as postdoctoral fellow. He is now a research fellow in the
Laboratory for Turbulence Research in Aerospace & Combustion (LTRAC) in
Monash University.
Fluid mechanic challenges at DST Group: from submarines to hypersonic vehicles
Malcolm Jones
Defence Science and Technology Group
4pm Friday 29 July 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The physics of fluid flow plays a dominant role in modelling vehicles
traveling through the atmosphere or oceans. Whether it is predicting the
drag experienced on a submarine, the lift generated by a flapping wing
micro air vehicle or the heating loads acting a hypersonic vehicle. The
Navier–Stokes equations governing these flows are known, but except
for a few trivial cases cannot be solved directly. For this reason a range
of alternative methods must be used. These include: approximations to the
equations, numerical solutions, laboratory scale experiments and field
trials. This talk will discuss how these methodologies are applied Defence
Science and Technology Group to three example research areas: submarine
hydrodynamics, flapping wing aerodynamics and hypersonic aerodynamics. While
these vehicles appear diverse there is a common theme in the technical
challenges and hence in the scientific approach taken.
Malcolm Jones received a PhD in fluid mechanics from The University of
Melbourne in 1998. He received a degree in mechanical engineering from the
same university in 1994. He joined the Defence Science and Technology Group
in 2007 where he is currently employed as a Research Scientist in the
Aerospace Division. Malcolm currently works on a range of diverse research
projects which include: aerodynamics of flapping wings, aerodynamics of
hypersonic vehicles (HIFiRE program), cavity aeroacoustics, boundary layer
transition, and submarine hydrodynamics. Prior to joining DSTO he was
employed as Research Fellow and lecturer in the Department of Mechanical
Engineering at The University of Melbourne and also at the School of
Mathematical Sciences, Queensland University of Technology.
Confirmation: DNS of a turbulent line plume in a confined region
Nitheesh George
University of Melbourne
4pm Thursday 28 July 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
We present results from a direct numerical simulation (DNS) of a turbulent
line plume in a confined region with adiabatic side, top and bottom walls.
The plume originates from a local line heat source of length, L, located at
the centre of the bottom wall (z/H = 0) and it rises until it hits the top
wall (z/H = 1) and spreads laterally to produce a buoyant fluid layer. Since
the region is confined, the continuous supply of buoyant fluid forces the
layer downwards, until it reaches the bottom wall, where the flow is said to
be the asymptotic state (Baines and Turner 1969). In the present case, two
Reynolds numbers, 3840 and 7680, are selected for plume lengths, L/H = 1, 2
and 4, where the Reynolds number of the plume is based on H and the buoyant
velocity scale, F_{0}^{1/3}, where F_{0} is
buoyancy flux per unit length. The current simulations are validated
against the analytical model presented by Baines and Turner (1969). The
simulations exhibit a slow flapping motion of the confined line plume in the
asymptotic state, which precludes a straightforward comparison with Baines
and Turner's analytical model. For the purpose of comparing the analytical
model, we have adapted a shifting method introduced by Hubner (2004), which
improves agreement with the analytical model.
Confirmation: Optimal actuator and sensor placement for feedback flow control using the complex Ginzburg–Landau equation
Stephan Oehler
University of Melbourne
4pm Friday 8 July 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The process of selecting the optimal actuator and sensor positions for a
singleinput singleoutput flow control problem is investigated and its
limitations are discussed. Multiple unstable modes and time delays between
actuating and sensing often result in a challenging flow control problem.
Previous approaches have focused on the use of modern control schemes, but
these do not always provide the full picture and difficult control problems
are often predicated on fundamental limitations, which are not made clear in
a modern control framework. In this paper, a previously developed control
scheme for the complex Ginzburg–Landau equation is presented, the
challenges for different setups are analysed and it is shown how
fundamental limitations can lead to an intractable control problem. The
research explores the control schemes developed for the complex
Ginzburg–Landau equation from the fundamental perspective, while
further connecting the two fields of fluid dynamics and control theory.
The mitigation of pulsation in ventilated supercavities
Grant Skidmore
University of Melbourne
4pm Friday 1 July 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
It is possible for an underwater body to greatly reduce the drag caused by
skin friction, using ventilated supercavitation. While the idea of
ventilated supercavitation works well in theory, the process of generating
a ventilated supercavity in practice is often plagued by pulsation. When a
supercavity pulsates, the walls of the supercavity begin to periodically
expand and contract. This can lead to the supercavity walls clipping the
body, which can become problematic for stability of the supercavitating
body. This seminar will explore the internal cavity pressure and nearfield
noise generated by experimental and computational supercavities. The results
of the acoustic study revealed that the radiated acoustic pressure of
pulsating supercavities is at least 40 dB greater than comparable twin
vortex and reentrant jet supercavity closure regimes. For pulsating
supercavities it was also found that, at the pulsation frequency, the cavity
interior pressure spectrum level was related to the nearfield and farfield
noise spectrum level through spherical spreading of the sound waves from the
supercavity interface. As a result, the cavity interior pressure can be used
as a measure of the radiated noise. The oscillatory nature of the internal
cavity pressure time history was used to develop a method to mitigate
supercavity pulsation. The method was explored with a numerical model,
experiments, and CFD. The method is based on modulating the ventilation rate
injected into a ventilated supercavity with the addition of a sinusoidal
component. The effect of this modulation is the ventilated supercavity being
effectively driven away from the resonance frequency. A wide range of
ventilation rate modulation frequencies can cause the pulsating supercavity
to transition into twin vortex closure. A reduction in the radiated noise
accompanies the transition from pulsation to twin vortex closure, oftentimes
35 dB or more. Other modulation frequencies do not suppress pulsation but
change the supercavity pulsation frequency.
Grant Skidmore is a postdoctoral researcher in Mechanical Engineering at the
University of Melbourne. Grant obtained his PhD in aerospace engineering
at the Pennsylvania State University. His research interests include
supercavitation, drag reduction, hydrodynamic stability, free surface flows,
multiphase flows, and turbulent wakes.
Confirmation: Geometric aspects of wallflow dynamics
Rina Perven
University of Melbourne
4pm Tuesday 28 June 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Complex but coherent motions form and rapidly evolve within wallbounded
turbulent flows. Research over the past two decades broadly indicates that
the momentum transported across the flow derives from the dynamics
underlying these coherent motions. This spatial organization, and its
inherent connection to the dynamics, motivates the present dissertation
research. The local field line geometry pertaining to curvature (κ)
and torsion (τ) has apparent connection to the dynamics of the flow, and
preliminary results indicate that these geometrical properties change
significantly with wallnormal position. One part of this research is thus
to clarify the observed changes in the field line geometry with the known
structure and scaling behaviours of the mean momentum equation. Towards this
aim, the planar curvature of the streamlines at each point in
streamwise–spanwise slices of existing boundary layer DNS has been
computed for different walllocations. The computation of κ and τ
arise from the local construction of the Frenet–Serret coordinate
frame. The present methods for estimating κ and τ are briefly
described, as is the need to improve the efficiency of this computation. The
present results are briefly described, as are the broader aims to better
understand the relationships between the geometry and dynamics of
wallflows. A schedule of the future work to be conducted is outlined.
Laser light sheet profile and alignment effects on PIV performance
Kristian Grayson
University of Melbourne
11am Monday 27 June 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The sensitivity and impact of laser profile misalignment and shape mismatch
on Particle Image Velocimetry (PIV) measurements are investigated in this
study. While the effects of laser profile misalignment can be equivalent to
an outofplane velocity component, light sheet mismatch can be identified
and corrected prior to an experiment, decreasing PIV uncertainties.
Synthetic particle image simulations are used to isolate and systematically
vary laser profile mismatch parameters between successive PIV laser pulses.
Two simulation cases are discussed, analysing the effects of a misalignment
between two otherwise identical laser pulses, as well as a mismatch in the
width of two laser profiles. Our results reveal a steady degradation in mean
correlation coefficient as the laser profiles are increasingly mismatched in
shape and alignment, coupled with a rapid rise in the detection of spurious
vectors. These findings reinforce the need to consider laser sheet alignment
and intensity distribution when seeking to capture high quality PIV
measurements. The design of a modular and inexpensive laser profiling camera
is outlined to enable robust and repeatable quantification of laser sheet
overlap and beam characteristics. The profiling system is also found to be
a valuable tool for laser diagnostics and aiding the setup of experiments.
Various potential applications of this device are presented for PIV and
other laserbased measurement techniques. Finally, preliminary results from
PIV experiments which involve the deliberate misalignment of laser profiles
are discussed. These data reiterate the trends observed in simulations, but
also emphasise the coupled complexity of laser profile mismatch behaviour in
experimental scenarios, placing the idealised simulation results in some
context. Collectively, our findings highlight the importance of wellmatched
laser profiles. A more rigorous experimental quantification of these
behaviours has the potential to enhance the quality of PIV results.
Towards a Moodylike diagram for turbulent boundary layers
Dale Pullin
Graduate Aerospace Laboratories, California Institute of Technology
4pm Friday 24 June 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
An empirical model is presented that describes a fully developed turbulent
boundary layer in the presence of surface roughness with a nominal roughness
lengthscale that varies parametrically with streamwise distance. For
Reynolds numbers based on the outer velocity and streamwise distance that
are large, use is made of a simple model of the local turbulent
meanvelocity profile that contains the Hama roughness correction for the
asymptotic, fully rough regime. It is then shown that the skin friction
coefficient is constant in the streamwise direction only for a linear
streamwise roughness variation. This then gives a two parameter family of
solutions for which the principal meanflow parameters can be readily
calculated. Results from this model are discussed for the
zeropressuregradient turbulent boundary layer, and some comparisons with
the experimental measurements of Kameda et al. (2008) are made.
Trends obtained from the model are supported by wallmodeled, largeeddy
simulation (LES) of the zeropressuregradient turbulent boundary layer at
very large Reynolds numbers. Both model and LES results are consistent with
the selfpreservation arguments of Talluru et al. (2016). It is
argued that the present model/LES can be interpreted as providing the
asymptotically roughwall equivalent of a Moodylike diagram for turbulent
boundary layers in the presence of smallscale wall roughness.
The speaker is the von Kármán Professor of Aeronautics at the
California Institute of Technology. His research interests include
computational and theoretical fluid mechanics, vortex dynamics, compressible
flow and shock dynamics, turbulence, and largeeddy simulation of turbulent
flows.
The universal nature of freestream coherent structures
Philip Hall
Monash University
4pm Friday 17 June 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Exact coherent structures are nonlinear solutions of the Navier Stokes
equations not necessarily arising as bifurcations from a base state. The
solutions are thought to be relevant to bypass transition and fully
turbulent flows. There are two fundamental types of solutions: vortexwave
interaction states and freestream coherent structures. A brief survey of the
field is given and then freestream coherent structures are discussed in
detail. These are shown to be driven in a nonlinear layer located where the
base flow adjusts to its freestream value through exponentially small terms.
It is shown that they are implicated in the production of passive near wall
streaks in a layer distant log R from the wall where R is the Reynolds
number. They are shown to be canonical states relevant to any 2D boundary
layer, vortex sheet, jet or wake and relevant to weakly 3D forms of the
latter flows. Remarkably it turns out that they also exist in any fully
developed flow having a local maximum of the unperturbed velocity field. The
relevance to fully turbulent flows is discussed.
Professor Philip Hall is the Head of School of Mathematics, Monash
University. Professor Hall is presently on leave from Imperial College,
where he became the first Director of the Institute of Mathematical Sciences
and where he has been the Director of LFC (Laminar Flow Control)UK. His
research interests are in applied mathematics, particularly in nonlinear
hydrodynamic stability theory, computational fluid dynamics, boundary layer
control, convection, lubrication theory, chaotic fluid motion, geomorphology
of rivers and coherent structures in high Reynolds number flows.
A voyage from the shifting grounds of existing data on zeropressuregradient turbulent boundary layers to infinite Reynolds number
Hassan M. Nagib
Illinois Institute of Technology, Chicago, USA
4pm Friday 10 June 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Aided by the requirement of consistency with the Reynoldsaveraged momentum
equation, the 'shifting grounds' are sufficiently consolidated to allow some
firm conclusions on the asymptotic expansion of the streamwise normal stress
normalized with the friction velocity; i.e.
<u^{+}u^{+}>. A detailed analysis of direct numerical
simulation data very close to the wall reveals that its inner nearwall
asymptotic expansion must be of the form f_{0}(y^{+})
− f_{1}(y^{+}) / U_{∞}^{+}
+ O(U_{∞}^{+})^{−2}, where f_{0}
and f_{1} are O(1) functions fitted to data. This means, in
particular, that the inner peak of the normal stress does not increase
indefinitely as the logarithm of the Reynolds number but reaches a finite
limit. The outer expansion of the normal stress
<u^{+}u^{+}>, on the other hand, is constructed by
fitting a large number of data from various sources. This exercise, aided
by estimates of turbulence production and dissipation, reveals that the
overlap region between inner and outer expansions of
<u^{+}u^{+}> is its plateau or second maximum,
extending to y_{break}^{+} =
O(U_{∞}^{+}), where the outher logarithmic decrease
towards the boundary layer edge starts. The common part of the two
expansions of <u^{+}u^{+}>, i.e. the height of the
plateau or second maximum, is of the form A_{∞} −
B_{∞} / U_{∞}^{+} + ... with
A_{∞} and B_{∞} constant. As a consequence, the
logarithmic slope of the outer <u^{+}u^{+}> cannot be
independent of the Reynolds number as suggested by 'attached eddy' models
but must slowly decrease as 1 / U_{∞}^{+}. A
speculative explanation is proposed for the puzzling finding that the
overlap region of <u^{+}u^{+}> is centered near the
lower edge of the mean velocity overlap, itself centered at y^{+}
= O(1 / Re_{δ*}^{0.5}) with
Re_{δ*} the Reynolds number based on free stream
velocity and displacement thickness. Similarities and differences between
<u^{+}u^{+}> in ZPG TBLs and in pipe flow will be
briefly discussed. Finally, the composite profile of
<u^{+}u^{+}> is used with our mean velocity composite
profile to demonstrate the detailed behavior of the socalled "diagnostic
plot" with Reynolds number.
Professor Nagib is the John T. Rettaliata Distinguished Professor of
Mechanical and Aerospace Engineering at the Illinois Institute of
Technology, Chicago, Illinois, and the Founding Director of the
Institute's Fluid Dynamics Research Center. His field of specialty is in
fluid mechanics, turbulent flow and flow management and control. Professor
Nagib is the recipient of a number of prestigious honors including being a
Fellow of the American Physical Society, the American Association of
Advancement of Science, the American Institute of Aeronautics and
Astronautics, and the American Society of Mechanical Engineers.
Largeamplitude flapping of an invertedflag in a uniform steady flow
John E. Sader
School of Mathematics and Statistics, University of Melbourne

Website
4pm Friday 3 June 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The dynamics of a cantilevered elastic sheet, with a uniform steady flow
impinging on its clampedend, have been studied widely and provide insight
into the stability of flags and biological phenomena. Recent measurements
show that reversing the sheet's orientation, with the flow impinging on its
freeedge, dramatically alters its dynamics. In contrast to the conventional
flag, which exhibits (smallamplitude) flutter above a critical flow speed,
the invertedflag displays largeamplitude flapping over a finite band of
flow speeds. In this talk, a combination of mathematical theory, scaling
analysis and measurement is used to investigate the origin of this
largeamplitude flapping motion. Flapping is found to be periodic
predominantly, with a transition to chaos as flow speed increases. These
findings have implications to leaf motion and other biological processes,
such as the dynamics of hair follicles, because they also can present an
invertedflag configuration. This collaborative work is with the Gharib
group at the California Institute of Technology.
John E. Sader is a Professor in the School of Mathematics and Statistics,
The University of Melbourne. He leads a theoretical group studying a range
of topics including the dynamic response of nanoparticles under femtosecond
laser excitation, mechanics of nanoelectromechanical devices, high Reynolds
number flow of thin films and rarefied gas dynamics in nanoscale systems.
Turbulent horizontal convection and heat transfer
Bishakhdatta Gayen
Research School of Earth Sciences, Australian National University

Website
4pm Friday 27 May 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Horizontal convection (HC) is driven by a horizontal difference in
temperature or heat flux at a single horizontal boundary of a fluid. In a
thermally equilibrated state, net heat flux over the boundary is zero and
circulation cell involves a horizontal boundary flow, turbulent plume motion
at the end wall, and interior return flow which covers the entire the flow
domain. HC may be a simple model of the meridonial overturning circulation
(also known as global thermohaline circulation) based on such convective
flow.
I will present threedimensional convective circulation under differential
heating on a single horizontal boundary of a rectangular channel, using
direct and large eddy simulations over a wide range of Rayleigh numbers,
Ra ∼ 10
^{8}–10
^{15}. A sequence of several
stability transitions lead to a change from laminar to fully developed
turbulent flow. At the smallest Ra, convection is maintained by a balance of
viscous and buoyancy forces inside the thermal boundary layer, whereas at
the largest Ra, inertia dominates over viscous stresses. This results in an
enhancement of the overall heat transfer at Ra ≥ 10
^{10}, while
both dynamical balances give Nu ∼ Ra
^{1/5}. We have recently
extended our study on circulation by applying thermal forcing on a
lengthscale smaller than the domain, and with variation in both horizontal
directions instead of traditional unidirectional gradient over the domain
scale. Simulations show turbulence throughout the domain, a regime
transition to a dominant domainscale circulation, and a region of
logarithmic velocity in the boundary layer. Scaling theory shows a new
regime dominated by inertia of the symmetric interior large scale
circulation, coupled to thermal dissipation in the boundary layer which
explains the Nu ∼ Ra
^{1/4} behaviour.
Finally, I will show circulation in a rotating rectangular basin forced by a
surface temperature difference but no wind stress. Here, our focus is on the
geostrophic regime for the horizontal circulation with a strong buoyancy
forcing (large Ra).
Buoyancy effects on turbulent entrainment
Dominik Krug
University of Melbourne
4pm Friday 6 May 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
In this talk, we will address the question which role buoyancy plays in the
entrainment process in unstable configurations such as turbulent plumes.
Based on data from direct numerical simulations of a temporal plume we show
that the entrainment coefficient can be determined consistently using a
global entrainment analysis in an integral framework as well as via a local
approach. The latter is based on a study of the local propagation of the
turbulent/nonturbulent interface (TNTI) relative to the fluid. We find that
locally this process is dominated by smallscale diffusion which is
amplified by interfaceconvolutions such that the total entrained flux is
independent of viscosity. Further, we identify a direct buoyancy
contribution to entrainment by the baroclinic torque which accounts for
8–12% percent of the entrained flux locally, comparable to the buoyancy
contribution at an integral level (15%). It is concluded that the effect of
the baroclinic torque is a mechanism which might lead to higher values of
the entrainment coefficient in spatial plumes compared to jets. Finally,
some results will be presented from applying the local analysis to a stable
configuration. Here, buoyancy is observed to reduce the entrainment rate by
reducing the surface area of the TNTI and we will consider how this affects
the fractal scaling.

Measuring ocean turbulence and inferring ocean mixing
Greg Ivey
University of Western Australia
4pm Friday 29 April 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Conversion: Experimental factors influencing the quality of PIV results
Kristian Grayson
University of Melbourne
2pm Wednesday 27 April 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Particle Image Velocimetry (PIV) is a useful tool for investigating the
behaviour of turbulent flows, enabling the capture of undisturbed
instantaneous velocity fields. The shape and alignment of the pulsed laser
sheets used in PIV can have a significant impact on the quality of results,
where laser profile mismatches can degrade correlation quality. This study
develops two key experimental and analysis tools to aid the refinement of
PIV techniques and systematically quantify the impact of unoptimised laser
characteristics. Improvements to PIV simulation software enable much more
experimentally realistic scenarios to be modelled and a laser profiling
camera allows laser characteristics and alignment to be quantified in
experimental setups for troubleshooting and analysis. The capabilities of
these tools can ultimately be used to assess the practicality and possible
benefits of more advanced and complex experimental PIV configurations.
Symmetries and symmetry breaking in bluffbody wakes
Justin Leontini
Swinburne University of Technology
4pm Friday 22 April 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
The periodic vortex shedding in the wake of a circular cylinder is one of
the most wellstudied flows in fluid mechanics. It often serves as a
canonical flow for understanding all bluffbody flows, as well as being
important in its own right due to the common use of cylindrical cross
sections in engineering structures. The periodic forcing on the structure
caused by this vortex shedding can lead to large correlated forces and
subsequent vibration. Often, it is desirable to control this motion to avoid
failure; at other times, this motion may be deliberately amplified to be
used as a source of energy harvesting. Here, I will present results looking
at simple control strategies of this wake, such as periodic forcing and
geometrical modifications such as streamlining. I will show that even these
simple modifications to the base cylinder flow can result in significant
changes in the flow, and that many of these changes can be understood by
considering the interaction of the symmetries of the base flow and the
imposed control.
Dr. Justin Leontini joined Swinburne in December 2013. Previous to this, he
was an Australian Postdoctoral Fellow at Monash University, spent time
working at the Centre for Maths and Information Science at CSIRO, and at
l'Institut de la Recherche sur les Phenomenes Hors Equilibre (IRPHE)
(trans. Dynamic Systems Research Institute) in Marseille, France. His
research work has spanned fundamental fluidstructure interactions,
planetary core flows, ship hydrodynamics, and flow stability. Recently, he
has been building a project investigating the gas transport mechanisms in
specialty ventilation machines in neonatal ICU wards. All of this research
is focussed around understanding the fundamental physics of flow phenomena
that have relevance to engineering or natural problems.
Direct and large eddy simulations of flows through lowpressure turbines subject to inlet disturbances
Richard Pichler
University of Melbourne
4pm Friday 15 April 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
To reduce specific fuel consumption and cost of jet engines it is
desirable to decrease the number of blades. As a result the individual
blades of modern lowpressure turbines (LPT) are subjected to more
severe pressure gradients that might lead to flow separation. Since
laminar boundary layers are more prone to separation than turbulent
ones, the actual transition location might dictate if a boundary layer
remains attached or not, which in general has a significant effect on
losses.
Transition is known to be influenced by the incoming flow state, in
particular inlet turbulence and discrete wakes shed by the upstream
blade row(s) that in essence are regions of highturbulence and
lowmomentum flow. To investigate the interaction of unsteady transition
and separation for varying design parameters, a combined largeeddy and
direct numerical simulation study has been conducted and the data have
been studied in light of loss generation.
The control of nearwall turbulence by nonconventional surfaces
Ricardo GarcíaMayoral
University of Cambridge 
Website
4pm Friday 8 April 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
Complex features on what would otherwise be a smooth wall can alter an
overlying turbulent flow. This talk will focus on surfaces that exploit
this capability to reduce wall friction, and will discuss three of such
surfaces: riblets, permeable and superhydrophobic surfaces. Riblets are
a kind of directional roughness made up of small surface grooves aligned
in the direction of the flow. Permeable coatings allow the flow to
penetrate into the surface to a certain extent. Superhydrophobic
surfaces, when immersed in water, can entrap pockets of air, so that the
water flow can effectively slip over them. In all cases, for small
texture or pore size the reduction of friction increases with size, but
beyond a certain size the performance begins to degrade, limiting the
range of technological interest and the optimum performance achievable.
The talk will discuss both the dragreducing and the dragdegrading
mechanisms for the above three types of surface.
Universality aspects and coupling mechanisms of turbulence
Patrick Bechlars
University of Melbourne
4pm Friday 1 April 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)
To understand, describe and model the physical processes that drive a
chaotic turbulent flow a comprehensive and detailed understanding of flow
features and their interconnection is needed. This can be obtained through
a thorough analysis that interprets and breaks down observations across
different flows and locations. This should be done to expose key features
of turbulence from different points of view. The features then need to be
connected to create the solution of the puzzle.
With this in mind a set of detailed timeresolved 3D flow data was sampled.
The set involves data from a turbulent boundary layer, turbulent pipe
flows, jet flows and a supersonic wake flow. I am happy to share these
datasets and look forward to upcoming collaborations.
Besides an outline of the available datasets, some universal and
nonuniversal aspects of turbulence across the different flows will be
discussed in the presentation. Further, an analysis based on the velocity
gradient invariant is applied to discuss the composition and development
of turbulence across a turbulent boundary layer flow. Also, the method was
extended to analyze the cascading process of kinetic energy. This analysis
exposes the backscatter mechanism that transfers kinetic energy from smaller
to larger scales of motion. Results for this will be shown and an underlying
physical mechanism will be suggested.

Completion: Structure of mean dynamics and spanwise vorticity in turbulent boundary layers
Caleb MorrillWinter
University of Melbourne
3.30pm Thursday 24 March 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)

Conditional methods for modelling turbulent combustion
Alexander Klimenko
University of Queensland
4pm Friday 18 March 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)

Highfidelity simulations of noise radiation from an elastic trailingedge
Stefan Schlanderer
University of Melbourne
4pm Friday 11 March 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)

A model problem for a supersonic gas jet from a moon
Hans Hornung
California Institute of Technology
4pm Friday 4 March 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)

Computing external flows with the immersed boundary method and the lattice Green's function
Tim Colonius
California Institute of Technology
3pm Friday 26 February 2016
Old Metallurgy Masters Seminar Room 2 (Room 202, Bldg 166)

Coherent features in jet aeroacoustics and wallbounded turbulence
Woutijn Baars
University of Melbourne
4pm Friday 19 February 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)

Dynamics of impacting slot jets
David Lo Jacono
Institut de Mécanique des Fluides de Toulouse
4pm Friday 12 February 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)

Investigation of supercritical airfoil dynamic response due to transonic buffet
Robert Carrese
RMIT University
Transition prediction for nonaxisymmetric bodies of revolution
David Pook
Defence Science and Technology Group
4pm Friday 22 January 2016
Mechanical Engineering Seminar Room Level 3 (Room 311, Bldg 170)